<![CDATA[Newsroom University of 鶹]]> /about/news/ en Wed, 18 Sep 2024 21:08:24 +0200 Wed, 18 Sep 2024 14:57:14 +0200 <![CDATA[Newsroom University of 鶹]]> https://content.presspage.com/clients/150_1369.jpg /about/news/ 144 Ocean waves grow way beyond known limits, new research finds /about/news/ocean-waves-grow-way-beyond-known-limits-new-research-finds/ /about/news/ocean-waves-grow-way-beyond-known-limits-new-research-finds/661697Scientists have discovered that ocean waves may become far more extreme and complex than previously imagined.

]]>
Scientists have discovered that ocean waves may become far more extreme and complex than previously imagined.

The new study, published in today, reveals that under specific conditions, where waves meet each other from different directions, waves can reach heights four times steeper than what was once thought possible.

It has often been assumed that waves are two-dimensional and understanding of wave breaking to-date has been based on these assumptions. Yet in the ocean, waves can travel in many directions and rarely fit this simplified model.

New insights by a team of researchers, including Dr Samuel Draycott from 鶹 and Dr Mark McAllister from the University of Oxford, reveal that three-dimensional waves, which have more complex, multidirectional movements, can be twice as steep before breaking compared to conventional two-dimensional waves, and even more surprisingly, continue to grow even steeper even after breaking has occurred.

The findings could have implications for how offshore structures are designed, weather forecasting and climate modelling, while also affecting our fundamental understanding of several ocean processes.

Professor Ton van den Bremer, a researcher from TU Delft, says the phenomenon is unprecedented: “Once a conventional wave breaks, it forms a white cap, and there is no way back. But when a wave with a high directional spreading breaks, it can keep growing.”

Three-dimensional waves occur due to waves propagating in different directions. The extreme form of this is when wave systems are “crossing”, which occurs in situations where wave system meet or where winds suddenly change direction, such as during a hurricane. The more spread out the directions of these waves, the larger the resulting wave can become.

,  Senior Lecturer in Ocean Engineering at 鶹, said: “We show that in these directional conditions, waves can far exceed the commonly assumed upper limit before they break. Unlike unidirectional (2D) waves, multidirectional waves can become twice as large before they break.”

Professor Frederic Dias of University College Dublin and ENS Paris-Saclay, added: “Whether we want it or not, water waves are more often three-dimensional than two-dimensional in the real world. In 3D, there are more ways in which waves can break.”

Current design and safety features of marine structures are based on a standard 2D wave model and the findings could suggest a review of these structures to account for the more complex and extreme behaviour of 3D waves.

Dr Mark McAllister from the University of Oxford and Wood Thilsted Partners said: “The three-dimensionality of waves is often overlooked in the design of offshore wind turbines and other marine structures in general, our findings suggest that this could lead to underestimation of extreme wave heights and potentially designs that are less reliable.”

The findings could also impact our fundamental understanding of several ocean processes.

Dr Draycott said: “Wave breaking plays a pivotal role in air-sea exchange including the absorption of C02, whilst also affecting the transport of particulate matter in the oceans including phytoplankton and microplastics.”

The project follows on previous research, , to fully for the first time ever at the the at the University of Edinburgh. Now, the team have developed a new 3D wave measurement technique to study breaking waves more closely.

The FloWave wave basin is a circular multidirectional wave and current simulation tank, which is uniquely suited to the generation of waves from multiple directions.  

Dr Thomas Davey, Principal Experimental Officer of FloWave, at the University of Edinburgh, said: “Creating the complexities of real-world sea states at laboratory scale is central to the mission of FloWave. This work takes this to a new level by using the multi-directional capabilities of the wave basin to isolate these important wave breaking behaviours.”

Dr Ross Calvert from the University of Edinburgh added: “This is the first time we've been able to measure wave heights at such high spatial resolution over such a big area, giving us a much more detailed understanding of complex wave breaking behaviour."

The study was conducted by a research consortium including experts from 鶹, University of Oxford, University of Edinburgh, University College Dublin, ENS Paris-Saclay and TU Delft.

]]>
2."]]> Wed, 18 Sep 2024 16:00:00 +0100 https://content.presspage.com/uploads/1369/97995155-287d-4389-90b3-fbd3571e4812/500_maumussoninlet2copyrightfabienduboc.jpg.jpg?10000 https://content.presspage.com/uploads/1369/97995155-287d-4389-90b3-fbd3571e4812/maumussoninlet2copyrightfabienduboc.jpg.jpg?10000
Scientist awarded Royal Society Career Development Fellowship for pioneering research /about/news/scientist-awarded-royal-society-career-development-fellowship-for-pioneering-research/ /about/news/scientist-awarded-royal-society-career-development-fellowship-for-pioneering-research/658234 is proud to share that Dr Bovinille Anye Cho has been announced as a recipient of the prestigious (CDF).

]]>

is proud to share that Dr Bovinille Anye Cho has been announced as a recipient of the prestigious (CDF), a programme aimed at developing underrepresentation in UK STEM academia.

Dr Anye Cho is one of eight outstanding researchers selected in the first cohort of CDFs, who are undertaking groundbreaking research that can benefit society and further human understanding.

His research centres on revolutionising bioenergy processes to become more environmentally sustainable, in particular, anaerobic digestion (AD), which is a process that transforms agricultural and food waste into a clean energy source known as biomethane.

Although an effective way to manage waste, this process also creates a significant amount of carbon dioxide (CO2) and impurities, which contributes to global warming.

Dr Anye Cho is exploring the use of microalgae, which can be used to convert CO2 into valuable food supplements and healthcare products through photosynthesis. In the UK, where tons of agricultural and food waste are generated, incorporating algae technology into the exiting AD facilities could increase the production of clean energy, while yielding high-value bio renewables that are currently heavily dependent on imports.

Dr Anye Cho’s project aims to employ advanced mathematical modelling and Artificial Intelligence methods to ensure that facilities of various sizes can operate effectively for long durations, enabling stability and boosting the production of clean energy and valuable products. His fellowship will be based in the Department of Chemical Engineering, where he has served as a Research Associate since March 2023. He earned his PhD from the same department in January 2023, completing it in an impressive three years while publishing over 11 original scientific papers.

The Career Development Fellowships are currently running as a pilot programme with researchers from Black and Mixed Black heritage. The CDFs offer four years of funding (up to £690,000), mentoring and support to kickstart the careers of researchers from underrepresented groups.

The scheme was launched in response to 11 years of higher education data which showed Black heritage researchers leave academia at higher rates than those from other groups. The impact of this higher attrition rate is pronounced at senior levels of academic careers.

Sir Adrian Smith, President of the Royal Society, said: “We need an academic system where talented researchers can build a career, whatever their background. But we know that is not the case in the UK today – particularly for researchers of Black heritage.

“The variety and quality of research being undertaken by this first cohort of Royal Society Career Development Fellows suggests a bright future ahead if we can ensure more outstanding researchers develop their talents and follow their research passions.

“I hope this pilot and the support it offers can be a launchpad to achieve that.”

In addition to their fellowship funding and support from the Royal Society, the award holders will have access to networking and mentoring opportunities supported by the (BBSTEM) network.

If the pilot is shown to be effective, the CDF programme could be expanded to include researchers from other groups, where the data shows there is persistent underrepresentation.

Dr Mark Richards, Senior Teaching Fellow at Imperial College London and a member of the Royal Society’s Equality, Diversity and Inclusion Subcommittee who participated in the shortlisting and assessment panels for the CDFs, said:

“There are many reasons scientists from marginalised groups may leave academia, often it’s because they’re looking ahead and not seeing themselves reflected in those spaces.

“This scheme, which offers funding, mentoring and recognition from a body like the Royal Society can be the endorsement to propel these eight excellent academics to go on and grow their own research groups.

Overtime I hope it can become self-sustaining, creating a network of scientists in universities, and beyond, who can help raise aspirations and open doors.”

  • Applications for the second year of Career Development Fellowships are due to open on 24 September 2024.
  • Find out more about the Royal Society Career Development Fellowships .
  • Read the Royal Society’s CDFs press release .
]]>
Wed, 18 Sep 2024 09:00:00 +0100 https://content.presspage.com/uploads/1369/e2763a67-aa7a-4720-bd8e-e840677f6a25/500_bovinilleanyecho.jpg?10000 https://content.presspage.com/uploads/1369/e2763a67-aa7a-4720-bd8e-e840677f6a25/bovinilleanyecho.jpg?10000
Machine learning powers discovery of new molecules to enhance the safe freezing of medicines and vaccines /about/news/machine-learning-powers-discovery-of-new-molecules-to-enhance-the-safe-freezing-of-medicines-and-vaccines/ /about/news/machine-learning-powers-discovery-of-new-molecules-to-enhance-the-safe-freezing-of-medicines-and-vaccines/658410Scientists from 鶹 and the University of Warwick have developed a cutting-edge computational framework that enhances the safe freezing of medicines and vaccines.

]]>
Scientists from 鶹 and the University of Warwick have developed a cutting-edge computational framework that enhances the safe freezing of medicines and vaccines.

Treatments such as vaccines, fertility materials, blood donations, and cancer therapies often require rapid freezing to maintain their effectiveness. The molecules used in this process, known as “cryoprotectants”, are crucial to enable these treatments. In fact, without cryopreservation, such therapies must be deployed immediately, thus limiting their availability for future use.

The breakthrough, published in , enables hundreds of new molecules to be tested virtually using a machine learning-based, data-driven model.

Professor Gabriele Sosso, who led the research at Warwick, explained: ’s important to understand that machine learning isn’t a magic solution for every scientific problem. In this work, we used it as one tool among many, and its success came from its synergy with molecular simulations and, most importantly, integration with experimental work.”

This innovative approach represents a significant shift in how cryoprotectants are discovered, replacing the costly and time-consuming trial-and-error methods currently in use.

Importantly, through this work the research team identified a new molecule capable of preventing ice crystals from growing during freezing. This is key, as ice crystal growth during both freezing and thawing presents a major challenge in cryopreservation. Existing cryoprotectants are effective at protecting cells, but they do not stop ice crystals from forming.

The team developed a computer models that was used to analyse large libraries of chemical compounds, identifying which ones would be most effective as cryoprotectants.

Dr Matt Warren, the PhD student who spearheaded the project, said: “After years of labour-intensive data collection in the lab, it’s incredibly exciting to now have a machine learning model that enables a data-driven approach to predicting cryoprotective activity. This is a prime example of how machine learning can accelerate scientific research, reducing the time researchers spend on routine experiments and allowing them to focus on more complex challenges that still require human ingenuity and expertise.”

The team also conducted experiments using blood, demonstrating that the amount of conventional cryoprotectant required for blood storage could be reduced by adding the newly discovered molecules. This development could speed up the post-freezing blood washing process, allowing blood to be transfused more quickly.

These findings have the potential to accelerate the discovery of novel, more efficient cryoprotectants - and may also allow for the repurposing of molecules already known to slow or stop ice growth.

Professor Matthew Gibson, from 鶹 Institute of Biotechnology at 鶹, added: “My team has spent more than a decade studying how ice-binding proteins, found in polar fish, can interact with ice crystals, and we’ve been developing new molecules and materials that mimic their activity. This has been a slow process, but collaborating with Professor Sosso has revolutionized our approach. The results of the computer model were astonishing, identifying active molecules I never would have chosen, even with my years of expertise. This truly demonstrates the power of machine learning.”

The full paper can be read .

]]>
Mon, 16 Sep 2024 11:57:46 +0100 https://content.presspage.com/uploads/1369/f36508a7-d4ef-4fa0-b8b6-5656125b9cfb/500_cryo.jpeg?10000 https://content.presspage.com/uploads/1369/f36508a7-d4ef-4fa0-b8b6-5656125b9cfb/cryo.jpeg?10000
Scientists develop artificial sugars to enhance disease diagnosis and treatment accuracy /about/news/scientists-develop-artificial-sugars-to-enhance-disease-diagnosis-and-treatment-accuracy/ /about/news/scientists-develop-artificial-sugars-to-enhance-disease-diagnosis-and-treatment-accuracy/654539Scientists have found a way to create artificial sugars that could lead to better ways to diagnose and treat diseases more accurately than ever before.

]]>
Scientists have found a way to create artificial sugars that could lead to better ways to diagnose and treat diseases more accurately than ever before.

Sugars play a crucial role in human health and disease, far beyond being just an energy source. Complex sugars called glycans coat all our cells and are essential for healthy function. However, these sugars are often hijacked by pathogens such as influenza, Covid-19, and cholera to infect us.

One big problem in treating and diagnosing diseases and infections is that the same glycan can bind to many different proteins, making it hard to understand exactly what’s happening in the body and has made it difficult to develop precise medical tests and treatments.

In a breakthrough, published in the journal , a collaboration of academic and industry experts in Europe, including from 鶹 and the University of Leeds, have found a way to create unnatural sugars that could block the pathogens.

The finding offers a promising avenue to new drugs and could also open doors in diagnostics by ‘capturing’ the pathogens or their toxins.

, a researcher from at 鶹, said “During the Covid-19 pandemic, our team introduced the first lateral flow tests which used sugars instead of antibodies as the ‘recognition unit’. But the limit is always how specific and selective these are due to the promiscuity of natural sugars. We can now integrate these fluoro-sugars into our biosensing platforms with the aim of having cheap, rapid, and thermally stable diagnostics suitable for low resource environments.”

Professor Bruce Turnbull, a lead author of the paper from the School of Chemistry and Astbury Centre for Structural Molecular Biology at The University of Leeds, said “Glycans that are really important for our immune systems, and other biological processes that keep us healthy, are also exploited by viruses and toxins to get into our cells. Our work is allowing us to understand how proteins from humans and pathogens have different ways of interacting with the same glycan. This will help us make diagnostics and drugs that can distinguish between human and pathogen proteins.”

The researchers used a combination of enzymes and chemical synthesis to edit the structure of 150 sugars by adding fluorine atoms. Fluorine is very small meaning that the sugars keep their same 3D shape, but the fluorines interfere with how proteins bind them.

, a researcher from 鶹 Institute of Biotechnology at 鶹, said “One of the key technologies used in this work is biocatalysis, which uses enzymes to produce the very complex and diverse sugars needed for the library. Biocatalysis dramatically speeds up the synthetic effort required and is a much more green and sustainable method for producing the fluorinated probes that are required.”

They found that some of the sugars they prepared could be used to detect the cholera toxin – a harmful protein produced by bacteria – meaning they could be used in simple, low-cost tests, similar to lateral flow tests, widely used for pregnancy testing and during the COVID-19 pandemic.

Dr Kristian Hollie, who led production of the fluoro-sugar library at the University of Leeds, said: “We used enzymes to rapidly assemble fluoro-sugar building blocks to make 150 different versions of a biologically important glycan. We were surprised to find how well natural enzymes work with these chemically modified sugars, which makes it a really effective strategy for discovering molecules that can bind selectively.”

The study provides evidence that the artificial “fluoro-sugars” can be used to fine-tune pathogen or biomarker recognition or even to discover new drugs. They also offer an alternative to antibodies in low-cost diagnostics, which do not require animal tests to discover and are heat stable.

The research team included researchers from eight different universities, including 鶹, Imperial College London, Leeds, Warwick, Southampton, York, Bristol, and Ghent University in Belgium.

]]>
Fri, 13 Sep 2024 10:00:00 +0100 https://content.presspage.com/uploads/1369/faa23028-05fe-4bb9-b199-c6f63270222b/500_mib-0892.jpg?10000 https://content.presspage.com/uploads/1369/faa23028-05fe-4bb9-b199-c6f63270222b/mib-0892.jpg?10000
University awarded £2.4 million to develop new methods to accelerate the replacement and management of SF6 /about/news/university-awarded-24-million-to-develop-new-methods-to-accelerate-the-replacement-and-management-of-sf6/ /about/news/university-awarded-24-million-to-develop-new-methods-to-accelerate-the-replacement-and-management-of-sf6/657375鶹 researchers, as part of a wider consortium led by National Grid Electricity Transmission (NGET), have been awarded funding to find a better way to manage, and ultimately replace SF6 with an environmentally-friendlier alternative. 

]]>
The global energy sector has long relied on sulphur hexafluoride (SF6) to play an important role in electricity systems to prevent short circuits and to keep networks safe and reliable. Now, the 鶹 team as part of a wider consortium led by National Grid Electricity Transmission (NGET) have been awarded funding to find a better way to manage, and ultimately replace SF6 with an environmentally-friendlier alternative. 

This ambitious project funded through Strategic Innovation Fund (SIF) Beta Phase, a competition ran by UK Research and Innovation (UKRI) and Ofgem, is part of an initiative designed to significantly reduce greenhouse gas emissions from the UK’s power grid. 

With £2.4 million in new funding for 鶹, the research will build on ’s work for SF6-free retrofill intervention techniques that could supplant SF6 without having to replace or significantly modify existing SF6-designed equipment. These investigations, in partnership with NGET, were named ‘Best Innovation in Net Zero and Sustainability’ at the 2022’s E&T Innovation Awards.  

This project will be led by Dr Tony Chen, Reader in High Voltage Engineering in 鶹’s Department of Electrical and Electronic Engineering. He will be joined by , Professor in Chemical Engineering, and , Professor in Artificial Intelligence.  

The impact of this project is expected to be wide-ranging and could lead to significant reduction in greenhouse gas emissions. 

The project will further develop aspects of SF6 management based on findings in its alpha phase and will explore the challenges and opportunities in SF6 replacement and management.  

The projects areas of focus include comparing different intervention strategies, developing energy-efficient methods for disposing SF6, modelling of SF6 leakage from switchgear equipment to better inform asset management strategy, and studying alternative gas blends that could replace SF6 in the longer term through retrofill intervention. These efforts are expected to lead to significant technological advancements, providing solutions that could be applied to other sectors that use SF6, such as high-voltage particle accelerators and future electrified transportation systems. 

This initiative could make a substantial contribution to the UK’s carbon reduction targets. If successful, its strategies for extending the lifespan of industry assets would also ensure a more reliable operation, lead to lower energy bills for consumers, and reduce the overall costs of running the national electricity network.  

By working with policymakers, industry leaders, and international standards bodies, the 鶹 team are aiming to shape global regulations, continuing to position the UK as a leader in sustainable energy solutions. Their vital research could make a significant contribution to world-wide efforts to cut greenhouse gas emissions from the power sector, helping to close the gap between an unsustainable present and a more sustainable future. 

]]>
6 effectively is crucial to achieving our goals. This project will deepen our understanding of SF6-free technologies, speeding-up their adoption and maintaining the reliability and resilience of the UK’s electricity infrastructure.”   ]]> Thu, 12 Sep 2024 15:05:06 +0100 https://content.presspage.com/uploads/1369/14aa60f1-8516-4f07-a428-83130f88e538/500_pylon-503935-1280.jpg?10000 https://content.presspage.com/uploads/1369/14aa60f1-8516-4f07-a428-83130f88e538/pylon-503935-1280.jpg?10000
鶹 leads European consortium to innovate cable technology for a greener power grid /about/news/manchester-leads-european-consortium-to-innovate-cable-technology-for-a-greener-power-grid/ /about/news/manchester-leads-european-consortium-to-innovate-cable-technology-for-a-greener-power-grid/657380Researchers at 鶹 will lead a European consortium to design crucial cable technology that will help achieve the ambition of transferring approximately 17% of total electricity from offshore wind by 2050. 

]]>
Researchers at 鶹 will lead a European consortium to design crucial cable technology that will help achieve the ambition of transferring approximately 17% of total electricity from offshore wind by 2050. 

The £5.5 million project, funded by Horizon Europe and the Swiss State Secretariat for Education, Research and Innovation (SERI), will involve a four-year collaboration between 鶹 and academic and industry experts from ETH Zurich, the University of Vienna, Universitat Politècnica de Catalunya, NKT Cable Group, Shell Research Ltd, S&B Insurance Advisors, and Arttic Innovation. This initiative aims to develop the enabling technology that supports a sustainable European electricity grid. 

Named DCDYNAMIC (Accelerating DC Dynamic Export Cable Technology for a Sustainable European Electricity Grid), the project will consist of three distinct parts. Firstly, understanding how electrical, mechanical, and thermal stresses impact these cables; secondly how to create real-world conditions for reliable testing; and thirdly, construction of a 320 kV high-voltage DC cable prototype, tested at scale using the simulated conditions created through the project. 

DCDYNAMIC will be led by , Reader in High Voltage Engineering in the Department of Electrical and Electronic Engineering, which houses the UK’s largest academic electrical test and research facility, the . He will be joined by , Professor of Materials Science and Chief Scientist at the , the UK’s national institute for material innovation; and , Reader in Nanomaterials based at the  

DCDYNAMIC is one of the earliest Horizon Europe projects since the UK re-joined, with a UK university serving as the lead coordinator. 

Project lead, Dr Tony Chen, said: “Being granted European Commission funding as the project coordinator on this scale demonstrates the competitiveness of UK institutions.”  

Home to over 2000 wind farms, and with the largest offshore wind capacity in the world, wind power already plays a leading part in the UK’s energy landscape. This offshore resource provides a range of advantages over its onshore equivalent; farms can be built at a greater scale (the UK currently has the biggest offshore wind farm in the world, Hornsea 1 near the Yorkshire coast), winds are higher and more consistent, and any visual impact concerns are significantly reduced.   

]]>
Tue, 10 Sep 2024 13:43:11 +0100 https://content.presspage.com/uploads/1369/a29e85a0-0624-41c0-94cb-a400f59f8e94/500_pinwheel-5882519-1280.jpg?10000 https://content.presspage.com/uploads/1369/a29e85a0-0624-41c0-94cb-a400f59f8e94/pinwheel-5882519-1280.jpg?10000
鶹 researcher awarded €1.5m ERC grant to revolutionise early detection of brain diseases /about/news/manchester-researcher-awarded-15m-erc-grant-to-revolutionise-early-detection-of-brain-diseases/ /about/news/manchester-researcher-awarded-15m-erc-grant-to-revolutionise-early-detection-of-brain-diseases/657164A leading nanomedicine researcher at 鶹 has secured a €1.5m (£1.3m) European Research Council (ERC) Starting Grant to push forward pioneering research on Alzheimer’s disease and glioblastoma.

]]>

A leading nanomedicine researcher at 鶹 has secured a €1.5m (£1.3m) European Research Council (ERC) Starting Grant to push forward pioneering research on Alzheimer’s disease and glioblastoma.

The five-year project, NanoNeuroOmics, aims to combine breakthroughs in nanotechnology, protein analysis, and blood biomarker discovery to make advances in two key areas.

First, the team led by will explore the use of nanoparticles to enrich and isolate brain-disease specific protein biomarkers in blood. These discoveries could pave the way for simple, reliable blood tests that diagnose Alzheimer’s and glioblastoma in their early stages.

Second, the research will investigate the phenomenon of “inverse comorbidity,” which suggests that having one of these conditions may reduce the risk of developing the other. Dr. Hadjidemetriou and her team will explore this surprising relationship to uncover any deeper biological connection that could lead to new treatment pathways.

Building on her 2021 research, where Dr. Hadjidemetriou developed a nanoparticle-enabled technology to detect early signs of neurodegeneration in blood, this project has the potential to transform how these brain diseases are diagnosed and treated.

Dr. Hadjidemetriou’s previous work involved using nano-sized particles, known as liposomes, to "fish" disease-specific proteins from the blood. This breakthrough enabled her team to discover proteins directly linked to neurodegeneration processes in the brain, among thousands of other blood-circulating molecules. In animal models of Alzheimer’s, this nano-tool successfully captured hundreds of neurodegeneration-associated proteins. Once retrieved from the bloodstream, the molecular signatures on the surface of these proteins were analysed, offering a clearer picture of the disease at a molecular level.

Now, Dr. Hadjidemetriou's team will evolve this expertise to identify highly specific biomarkers by tracking protein changes in both blood and brain over time and across different stages of Alzheimer's and glioblastoma. By working with different nanomaterials, they hope to isolate these key protein markers from the complex mix of molecules in the blood.

The  NanoNeuroOmics project’s multidisciplinary approach brings together experts in nanotechnology and omics sciences to develop methods for detecting and potentially treating these diseases with greater precision. Research will be conducted at 鶹’s , a cutting-edge facility dedicated to advancing nanoscale technologies. The Centre's focus spans multiple fields, including omics, neurology, therapeutics, and materials science.

Dr. Hadjidemetriou’s team is also part of 鶹’s vibrant 2D materials science community, home to the discovery of graphene 20 years ago, continuing the university’s legacy of scientific innovation.

]]>
Mon, 09 Sep 2024 09:00:00 +0100 https://content.presspage.com/uploads/1369/446c2dd6-bf15-4500-a388-bbaee7e4e45b/500_drmarilenahadjidemetriou.jpg?10000 https://content.presspage.com/uploads/1369/446c2dd6-bf15-4500-a388-bbaee7e4e45b/drmarilenahadjidemetriou.jpg?10000
Scientist awarded medal for contribution to the history of biology /about/news/scientist-awarded-medal-for-contribution-to-the-history-of-biology/ /about/news/scientist-awarded-medal-for-contribution-to-the-history-of-biology/657114A University of 鶹 scientist has been awarded the prestigious by the Royal Society for his work documenting the history of biology as both an author and a broadcaster.

]]>

A University of 鶹 scientist has been awarded the prestigious by the Royal Society for his work documenting the history of biology as both an author and a broadcaster.

The medal, given for excellence in a subject relating to the history, philosophy or social function of science, was awarded to Professor Matthew Cobb last week.

Professor Cobb joined in 2002 as a lecturer in animal behaviour; he is currently a Professor of Zoology in the Division of Evolution, Infection and Genomics, but will shortly retire, becoming Professor Emeritus.

While most of Professor Cobb’s research has been on behaviour and communication in animals, his Royal Society medal is in recognition of his contribution to the history of science.

Professor Cobb said: “This is a tremendous honour for me – the Medal is the fusion of three awards, one of which goes back 80 years, and has been won by some extraordinary people.

is really quite humbling to be in such company. And a vindication of 鶹’s embrace of multidisciplinarity, and of the School of Biological Sciences’ enthusiasm for its students’ taking courses from the Centre for the History of Science, Technology and Medicine.”

In 2021, Professor Cobb presented a BBC radio series on the history of genetic engineering, He has also presented programmes about the history of academic publishing, the development of CRISPR gene editing, as well as programmes about the origins of animals and the life of the revolutionary scientist Sydney Brenner.

Alongside his BBC series, Professor Cobb is known to a wider audience through his books which have received commercial success. In 2022, he published The Genetic Age: Our Perilous Quest to Edit Life. In 2020, The Idea of the Brain was chosen as one of The Sunday Times' ‘Books of the Year’.

The Wilkins, Bernal and Medawar lectures were originally delivered as three separate lectures, before they were combined under one title in 2007. Previous winners include Melvyn Bragg in 2010, Professor Jim Al-Khalili OBE FRS in 2020, and most recently Professor Sarah Franklin, who in 2023 delivered the lecture, ‘Talking Embryos: Changing Public Perceptions of Embryo Research’.

Professor Cobb’s passions extend beyond science. He has written two books on the French Resistance during World War II, one of which won the Anglo-French Society Award.

For this work he was made a Chevalier dans l’Ordre des Palmes académiques, an award conferred by the French government for significant contributions to the advancement of intellectual, scientific and artistic pursuits.

Professor Cobb is currently finishing a biography about Francis Crick, the co-discoverer of the DNA double helix; Crick’s extraordinary career will potentially inform the subject of Cobb’s Royal Society lecture. The date of his prize lecture is yet to be confirmed.

  • To read more on the Royal Society’s 2024 award recipients visit .
]]>
Fri, 06 Sep 2024 14:04:21 +0100 https://content.presspage.com/uploads/1369/f6e36cd9-d6c4-408c-ad0f-8c946d37d8b3/500_mfdomi0a.jpeg?10000 https://content.presspage.com/uploads/1369/f6e36cd9-d6c4-408c-ad0f-8c946d37d8b3/mfdomi0a.jpeg?10000
Researchers unveil energy storage mechanism in the thinnest possible lithium-ion battery /about/news/researchers-unveil-energy-storage-mechanism-in-the-thinnest-possible-lithium-ion-battery/ /about/news/researchers-unveil-energy-storage-mechanism-in-the-thinnest-possible-lithium-ion-battery/657011A team of scientists from 鶹 has achieved a significant breakthrough in understanding lithium-ion storage within the thinnest possible battery anode - composed of just two layers of carbon atoms. Their research, published in , shows an unexpected ‘in-plane staging’ process during lithium intercalation in bilayer graphene, which could pave the way for advancements in energy storage technologies.

]]>
A team of scientists from 鶹 has achieved a significant breakthrough in understanding lithium-ion storage within the thinnest possible battery anode - composed of just two layers of carbon atoms. Their research, published in , shows an unexpected ‘in-plane staging’ process during lithium intercalation in bilayer graphene, which could pave the way for advancements in energy storage technologies.

Lithium-ion batteries, which power everything from smartphones and laptops to electric vehicles, store energy through a process known as ion intercalation. This involves lithium ions slipping between layers of graphite - a material traditionally used in battery anodes, when a battery is charged. The more lithium ions that can be inserted and later extracted, the more energy the battery can store and release. While this process is well-known, the microscopic details have remained unclear. The 鶹 team’s discovery sheds new light on these details by focusing on bilayer graphene, the smallest possible battery anode material, consisting of just two atomic layers of carbon.

In their experiments, the researchers replaced the typical graphite anode with bilayer graphene and observed the behaviour of lithium ions during the intercalation process. Surprisingly, they found that lithium ions do not intercalate between the two layers all at once or in a random fashion. Instead, the process unfolds in four distinct stages, with lithium ions arranging themselves in an orderly manner at each stage. Each stage involves the formation of increasingly dense hexagonal lattices of lithium ions.

, who led the research team, commented, "the discovery of 'in-plane staging' was completely unexpected. It revealed a much greater level of cooperation between the lattice of lithium ions and the crystal lattice of graphene than previously thought. This understanding of the intercalation process at the atomic level opens up new avenues for optimising lithium-ion batteries and possibly exploring new materials for enhanced energy storage."

The study also revealed that bilayer graphene, while offering new insights, has a lower lithium storage capacity compared to traditional graphite. This is due to a less effective screening of interactions between positively charged lithium ions, leading to stronger repulsion and causing the ions to remain further apart. While this suggests that bilayer graphene may not offer higher storage capacity than bulk graphite, the discovery of its unique intercalation process is a key step forward. It also hints at the potential use of atomically thin metals to enhance the screening effect and possibly improve storage capacity in the future.

This pioneering research not only deepens our understanding of lithium-ion intercalation but also lays the groundwork for the development of more efficient and sustainable energy storage solutions. As the demand for better batteries continues to grow, the findings in this research could play a key role in shaping the next generation of energy storage technologies.

 

The (NGI) is a world-leading graphene and 2D material centre, focussed on fundamental research. Based at 鶹, where graphene was first isolated in 2004 by Professors Sir Andre Geim and Sir Kostya Novoselov, it is home to leaders in their field – a community of research specialists delivering transformative discovery. This expertise is matched by £13m leading-edge facilities, such as the largest class 5 and 6 cleanrooms in global academia, which gives the NGI the capabilities to advance underpinning industrial applications in key areas including: composites, functional membranes, energy, membranes for green hydrogen, ultra-high vacuum 2D materials, nanomedicine, 2D based printed electronics, and characterisation.

]]>
Fri, 06 Sep 2024 13:14:00 +0100 https://content.presspage.com/uploads/1369/500_ngi-2.jpg?10000 https://content.presspage.com/uploads/1369/ngi-2.jpg?10000
Record £10.2m investment to continue improving research software practices /about/news/record-102m-investment-to-continue-improving-research-software-practices/ /about/news/record-102m-investment-to-continue-improving-research-software-practices/656295A project that aims to advance research software practices across the UK, has been awarded a record .

]]>
A project that aims to advance research software practices across the UK, has been awarded a record .

The substantial investment from the , marks the fourth phase of The’s (SSI) mission to transform research culture by establishing the principle that reliable, reproducible, and reusable software is necessary across all research disciplines.

The SSI, which is based at the universities of 鶹, Edinburgh, and Southampton, was established in 2010 as the world’s first organisation dedicated to improving software in research, with 鶹 playing a central role in its success.

The next phase will focus on tackling critical challenges in research software, including environmental sustainability, equality, diversity, inclusion, and accessibility, as well as the rising interest in Artificial Intelligence (AI) and Machine Learning.

The next phase of the programme will run from 2024 to 2028 and will be led by the .

It is fourth time the SSI has been entrusted with public funding to carry out its mission of transforming research culture by establishing the principle that reliable, reproducible, and reusable software is necessary across all research disciplines.

It achieves this by working with, and investing in, individuals and organisations from across the sector. The SSI’s “collaborate, not compete” ethos has allowed research software to move towards becoming a first-class citizen in the research landscape.

Christopher Smith, Executive Chair  of the Arts and Humanities Research Council, said: “Software plays a fundamental role in all disciplines of research. That’s why it’s so important that we invest in supporting the development of research software that is top quality, meets the needs of our research communities, is environmentally sustainable and is ready for the future. 

“This record £10.2 million investment is part of the UKRI Digital Research Infrastructure programme’s ongoing investment in evolving existing capability and supporting new infrastructure. It reflects the SSI’s strong track record and the importance of its work for the future of research. I am delighted that AHRC will be hosting this investment for all UKRI communities for the next four years.”

Neil Chue Hong, SSI Director and Professor of Research Software Policy and Practice, added: “Every modern societal advance is driven by research which relies on software. From weather forecasting to whether we can build new narratives for the next decade, it’s important that we provide equitable access to the digital tools and skills enabling this. This grant - which will see the SSI into its 18th year - enables us to work with the research community to build capability and expertise, ensuring a sustainable future for research software.”

The SSI was founded in 2010 thanks to funding from the (EPSRC). In 2016, the (ESRC) and the (BBSRC) joined EPSRC to further invest and help continue the work of the SSI throughout its second phase. The third phase was funded by all UKRI research councils.

]]>
   ]]> Fri, 30 Aug 2024 09:00:00 +0100 https://content.presspage.com/uploads/1369/799a2bee-0996-4447-a58d-7c645c217105/500_ssirelease.png?10000 https://content.presspage.com/uploads/1369/799a2bee-0996-4447-a58d-7c645c217105/ssirelease.png?10000
Scientists investigate triggers of explosive volcanic eruptions in lab simulation study /about/news/scientists-investigate-triggers-of-explosive-volcanic-eruptions-in-lab-simulation-study/ /about/news/scientists-investigate-triggers-of-explosive-volcanic-eruptions-in-lab-simulation-study/655056Scientists at 鶹 have effectively simulated how bubbles grow in volcanic magma thanks to a novel pressure vessel that can mimic the eruption process in a laboratory setting.

]]>
Scientists at 鶹 have effectively simulated how bubbles grow in volcanic magma thanks to a novel pressure vessel that can mimic the eruption process in a laboratory setting.

With most volcanic activity taking place underground unobserved, for the first time scientists have been able to capture vesiculation kinetics in basaltic magmas in real time. Published today in , the study sheds new light on one of nature’s most astonishing phenomena.

Volcanic eruptions differ drastically, ranging from gentle effusive lava flows to highly explosive events - or sometimes switching between the two at a moment’s notice.

At the worst end of the scale, volcanic eruptions eject massive volumes of magma and volcanic gases into the air. This causes catastrophic local damage and often prompts wide-reaching global effects too, like air traffic space closure and changes in weather patterns.

Scientists highlighted that eruptive style is influenced by how gas dissolved in magma is released. Contrasts can be drawn between how a waiter opens a bottle of champagne in a restaurant, and how champagne pops when shaken by Grand Prix winners. Despite both bottles having the same amount of gas, the champagne leaves the bottles at vastly different speeds.

Volcanic eruption styles depend on how easily magma decouples from gas during ascent, with stronger gas-melt coupling leading to more explosive reactions. This study allowed scientists to observe and quantify real-time bubble growth and coalescence in magma as it reaches the surface.

The pressure vessel used in the laboratory experiments was thick enough to contain vast amounts of stored energy, and X-rays (the I12-JEEP synchrotron beamline from Diamond Light Source) were used to see through the magma sample and make the observations.

, Research Associate in the Department of Earth and Environmental Sciences at 鶹 and lead author of the study, commented: “The experimental results obtained in this study through the combination of our novel vessel apparatus and X-ray synchrotron radiography, offer an improved understanding of coupling and decoupling between magma and volatiles during ascent in the conduit. This study provides insights into processes leading to eruptive style transitions and, ultimately, has fundamental implications for hazard assessment and risk mitigation in area of active basaltic volcanism.”

Pressure in the chambers could be increased or decreased in a controlled way, allowing scientists to see how expanding bubble walls are broken during coalescence at different pressures and temperatures, from 10km in the magmatic plumbing system right up to the conduit beneath a volcano.

The study is a result of a NERC-NFS large grant awarded to 鶹, in addition to the universities of Bristol, Durham, Cambridge and Arizona State in the USA. A UKRI FLF project grant was also awarded to 鶹, and the study was completed in collaboration with colleagues at ESRF in Grenoble, France who developed the novel experimental pressure vessel with windows used in the study.

The growth rates sourced from this new technique confirm previous estimations that used numerical and theoretical modelling. This study contributes to a better understanding of magma behaviour and will greatly improve knowledge of volcanic processes, in addition to helping with future hazard assessment and risk mitigation in areas of active volcanic activity.

]]>
Fri, 16 Aug 2024 19:05:00 +0100 https://content.presspage.com/uploads/1369/18e4b3d7-8a3f-48c7-9298-5b03f353cfbc/500_asa-steinarsdottir-unsplash.jpg?10000 https://content.presspage.com/uploads/1369/18e4b3d7-8a3f-48c7-9298-5b03f353cfbc/asa-steinarsdottir-unsplash.jpg?10000
鶹 lecturer takes to saddle to raise money for autism charity /about/news/manchester-lecturer-takes-to-saddle-to-raise-money-for-autism-charity/ /about/news/manchester-lecturer-takes-to-saddle-to-raise-money-for-autism-charity/653678A keen cyclist from 鶹 has decided to take to the saddle to raise money for an autism charity.

]]>
A keen cyclist from 鶹 has decided to take to the saddle to raise money for an autism charity.

Medical Law and Bioethics Lecturer Dr Jonathan Lewis, from the University’s Department of Law and Centre for Social Ethics and Policy, has taken part in amateur road cycling races for many years. However, as he approaches his 40th birthday later this year, he has now decided to replace these gruelling competitions with long-distance charity rides.

This summer, he will be taking part in four events. The first - which has already taken place - is the North Down Coastal Challenge. Then Jonathan will travel to France for a 48-hour fly-by trip to take on the Gran Fondo Col de la Loze - a 117km route with 4377m of elevation and two ascents of the infamous Col de la Loze, known as the country’s toughest climb. 

In August he’ll take part in the Inishowen 100, Northern Ireland's premier sportive run covering a hilly 100-mile course along the scenic Wild Atlantic Way. A week later, he will round off the summer with the Lap the Lough sportive - a 150km route around the beautiful but environmentally threatened Lough Neagh in Northern Ireland. 

To add to the challenge, he aims to complete the Inishowen 100 in under six hours – if he manages this, he will personally match the total amount of donations he receives from others.

The charity he is raising funds for is , which trains dogs and places them with children with autism. The animals enable the children to go outside safely and reduce their anxiety, providing a vital lifeline for children and their families. The charity also raises autism awareness among the general public by holding workshops, school talks and large events.

“As someone with Autism Spectrum Disorder and with family members who are severely autistic, I know only too well the huge challenges that children with autism and their families can face on a daily basis over many years”, said Jonathan. 

He will record his experiences during all four events using a GoPro camera, and plans to compile a video towards the end of the summer. 

To support Jonathan in his series of challenges, visit .

]]>
Wed, 31 Jul 2024 15:32:45 +0100 https://content.presspage.com/uploads/1369/2de5c831-19d7-40f3-a700-45e137a7cabf/500_autismcycle.jpg?10000 https://content.presspage.com/uploads/1369/2de5c831-19d7-40f3-a700-45e137a7cabf/autismcycle.jpg?10000
New study reveals new intricate behaviours of deep-sea currents /about/news/new-study-reveals-new-intricate-behaviours-of-deep-sea-currents/ /about/news/new-study-reveals-new-intricate-behaviours-of-deep-sea-currents/653635A new study has revealed that changes in the ocean floor impacts currents, giving new insight into the deep-sea pathways of nutrients and pollutants. 

]]>
A new study has revealed that changes in the ocean floor impacts currents, giving new insight into the deep-sea pathways of nutrients and pollutants. 

The study, published in by scientists at 鶹 and led by the National Oceanography Centre (NOC), has found that currents sped up, slowed down, changed direction, and sometimes reversed direction completely, depending on the varying and uneven surfaces and features found on the ocean floor.

Previous models suggested that these currents would be continuous and steady. These findings will help scientists to understand the deep-sea pathways of nutrients that sustain deep-sea ecosystems, as well as assessing where microplastics and other pollutants accumulate in the ocean.

By better understanding how deep-sea currents interact with the seafloor, scientists can now more accurately interpret the deposits they leave behind. Those deposits act as long-term recorders of past climate change and can provide important clues about the potential impacts of future ocean changes. 

The seafloor is the final destination for particles such as sand, mud, organic carbon that provides food for seafloor organisms, and even pollutants. Accumulations of these particles in the deep sea are used to reconstruct past climates, natural hazards and ocean conditions. This provides valuable archives of climate change that extends far beyond historical records.

The lead scientist on the project, Dr Mike Clare of NOC, said: is important to understand the behaviour and pathways of currents that operate in the deep sea, to determine pathways of natural and human-made particles. This information helps identify where pollution is coming from, which ecosystems it will interact with, and how to make sense of the records preserved in deposits.

“However, there have been very few direct measurements made of currents that flow across the seafloor in deep waters. Most are made high above the seafloor, over short timescales, and only at individual locations. Until now we have not understood how dynamic seafloor currents can be in the deep sea.”

The new study, which involved researchers from the UK, Canada, Germany and Italy, analysed data from an extensive array of sensors to determine the variability in seafloor currents over four years. Thirty-four deep sea moorings were deployed in up to 2.5 km water depths, equipped with high-frequency Acoustic Doppler Current Profilers - likened to an underwater speed camera that measures seafloor currents.

The study’s lead author, Dr Lewis Bailey, formerly of NOC and now at University of Calgary, said “The ocean bottom currents offshore Mozambique are far more variable than we expected. Just like currents in the upper ocean, their intensity changes between seasons and can even flip backwards and forwards over the course of several hours.”

from 鶹, and a co-author of the study, added: “Seeing how these currents behave is a bit like observing the weather in 鶹 - always changing and often surprising. But observing change in the deep sea is really challenging and, until now, we have had a poor understanding of what background conditions are like in the deep-sea.”

Professor Elda Miramontes from the University of Bremen, also a co-author of the study, said: “These are the first measurements of deep-sea currents across such a large area, long duration and so close to the seafloor. This makes them extremely valuable as they will help improve our models for reconstructing past changes related to climate change in the ocean.”

Dr Mike Clare of NOC, added: “The deep sea can be extremely dynamic and this study underlines the importance of sustained observations, which provide critical information on understanding the ocean. More detailed observations are critical for understanding the important role bottom currents play in transporting sediment, carbon and pollutants across our planet.”

The full study “Highly variable deep-sea currents over tidal and seasonal timescales” was published in Nature Geoscience: .

]]>
Wed, 31 Jul 2024 10:19:57 +0100 https://content.presspage.com/uploads/1369/fda62322-4c1b-4f89-a178-f11436395d76/500_nationaloceanographycentreequipment.jpg?10000 https://content.presspage.com/uploads/1369/fda62322-4c1b-4f89-a178-f11436395d76/nationaloceanographycentreequipment.jpg?10000
Scientists control bacterial mutations to preserve antibiotic effectiveness /about/news/scientists-control-bacterial-mutations-to-preserve-antibiotic-effectiveness/ /about/news/scientists-control-bacterial-mutations-to-preserve-antibiotic-effectiveness/653000Scientists have discovered a way to control mutation rates in bacteria, paving the way for new strategies to combat antibiotic resistance.

]]>
Scientists have discovered a way to control mutation rates in bacteria, paving the way for new strategies to combat antibiotic resistance.

Antibiotics are given to kill bad bacteria, however with just one mutation a bacteria can evolve to become resistant to that antibiotic, making common infections potentially fatal.

The new research, published today in the journal , used high-performance computing to simulate more than 8,000 years of bacterial evolution, allowing scientists to predict mechanisms that control mutation rates. They then made more than 15,000 cultures of E. coli in lab conditions to test their predictions - that’s so many that if you lined up all of the bacteria in this study, they would stretch 860,000km, or wrap around the Earth more than 20 times!

The tests revealed that bacteria living in a lowly populated community are more prone to developing antibiotic resistance due to a naturally occurring DNA-damaging chemical, peroxide. In crowded environments, where cells are more densely packed, bacteria work collectively to detoxify peroxide, reducing the likelihood of mutations that lead to antibiotic resistance.

The finding could help develop "anti-evolution drugs" to preserve antibiotic effectiveness by limiting the mutation rates in bacteria.

Lead researcher from 鶹, said: "Antibiotic resistance presents an existential challenge to human health. Bacteria rapidly evolve resistance to the antibiotic drugs we use to treat infections, while new drugs aren’t being developed fast enough to keep up.

“If we can’t keep antibiotics working, routine surgery could be a life-or-death encounter, with common infections becoming untreatable.

“By understanding the environmental conditions that influence mutation rates, we can develop strategies to safeguard antibiotic effectiveness. Our study shows that bacterial mutation rates are not fixed and can be manipulated by altering their surroundings, which is vital on our journey to combat antibiotic resistance."

Peroxide, a chemical found in many environments, is key to this process. When E. coli populations become denser, they work together to lower peroxide levels, protecting their DNA from damage and reducing mutation rates. The study showed that genetically modified E. coli that is unable to break down peroxide had the same mutation rates, no matter the population size. However, when helper cells that could break down peroxide were added, the mutation rate in these genetically modified E. coli decreased.

The research builds on previous findings by group, which indicated that denser bacterial populations experience lower mutation rates. The current study uncovers the specific mechanism behind this phenomenon, highlighting the role of collective detoxification in controlling mutation rates.

The research team, part of the Microbial Evolution Research in 鶹 (MERMan) collective, conducted this extensive study with contributions from researchers at all career stages. The lab work was primarily carried out by a PhD student, alongside six undergraduate and master's students, under the guidance of four lab group leaders.

]]>
Thu, 25 Jul 2024 19:00:00 +0100 https://content.presspage.com/uploads/1369/5870708c-3079-4064-ad56-3fdbd25baa26/500_abresistance.jpg?10000 https://content.presspage.com/uploads/1369/5870708c-3079-4064-ad56-3fdbd25baa26/abresistance.jpg?10000
False stereotypes mean endangered animals are being protected in the wrong places /about/news/false-stereotypes-mean-endangered-animals-are-being-protected-in-the-wrong-places/ /about/news/false-stereotypes-mean-endangered-animals-are-being-protected-in-the-wrong-places/652793

By , and ,

Giant panda reclining in cloudy hills eating bamboo, European bison picking their way through gloomy and lichen-draped forests and Cape mountain zebra roaming arid mountains. Ideas of how and where these species live are fixed in the public imagination, in conservation practice and even in some species’ names – but they may simply be stereotypes.

can develop when research is carried out on a small, biased sample that isn’t representative of a species’ entire natural range. They often give an overly narrow, or just plain wrong, idea of what is needed for survival and breeding.

This problem is particularly acute after range declines, as something can’t be studied where it no longer exists. The idea that the giant panda is so often depicted as eating bamboo may be an artefact of them being rather than a quirk of evolution. In an ideal world, pandas would use a wider range of forest types and have a varied diet much more similar to other bears.

What this means for conservation is that protected areas may not be ideal for the species they are supposedly there to protect.

Similar to the common assumption that pandas prefer to live only on bamboo, there has long been a belief among conservationists that the critically endangered black rhino, given the choice, prefer to eat acacia trees.

But we thought that understanding of black rhino biology, including its diet, could also be a stereotype because habitat loss and the ongoing threat of poaching mean populations are mostly fenced into isolated reserves dotted across the species’ former range.

They are also an excellent test case for busting stereotypes because intensive anti-poaching monitoring has produced some of the most detailed information on births and deaths for any free-living species.

Rhinos struggling in their supposedly ideal habitat

We conducted research in three reserves across the Laikipia plateau in northern Kenya: Lewa, Ol Jogi and Ol Pejeta. This region’s upland savanna ecosystem is exceptional as it has maintained a community of large mammals that can mostly freely migrate. Black rhino however are fixed in place by special fences, and growing numbers mean that . The risk of new populations failing to establish themselves is heightened if the identification of new areas are based on a species stereotype.

Black rhinos are considered to mainly eat trees and to prefer acacia, distinctively thorny and often flat-topped. So when rhinos eat grass it’s taken as an indicator of poor habitat, or of competition with other tree and shrub browsers such as elephants.

The first hint of a stereotype was our finding that females in Ol Jogi have than those in Lewa and Ol Pejeta. This was surprising because Ol Jogi should be an ideal habitat.

The Ol Jogi landscape is classic East African savanna, with rocky outcrops standing proud above wooded grassland. In the dry season the green of the dominant acacia trees stands out against the straw-coloured grass and the red-brown earth. Acacia makes up a higher proportion of the trees here than on the other two reserves, so why should the black rhino population be struggling? By picking up dung and sequencing the plant DNA found within it, we have uncovered .

Rhinos actually prefer grass

The idea for this research was that how an animal’s diet changes from season to season can uncover what its preferred diet would be. For a savanna herbivore, there is far more to eat in the wet season so we expect that they should focus on finding the best food available. In contrast, in the dry season they should eat whatever they can get their teeth into.

In the wet season, we found that black rhino consistently ate less acacia and more grass. The more acacia a rhino ate in the dry season, the larger the shift away from it in the wet season. Together, this suggests that grass is actually a preferred food and acacia functions as a “fallback food”.

Importantly for conservation, females with larger seasonal dietary shifts, which were restricted to acacia in the dry season, bred more slowly. Most of the acacia-eating, diet-shifting, slow-breeding females live on Ol Jogi, whereas rhinos on the other two reserves could consume more grass year-round and breed more often.

The heavy reliance of Ol Jogi rhino on acacia as a fallback food, which leads to slower breeding, and the historically overlooked importance of grass, can at least partly explain why the population does not perform as well. This is crucial for black rhino conservation because habitats are deemed suitable or not largely based on the availability of trees, and particularly acacia.

Conservation may be incorrectly estimating how many rhinos reserves can support, and risk identifying areas where rhino will breed slowly, and be at risk of dying out, as prime habitat. Money and effort may be wasted by trying to conserve this iconic species in the wrong places.

More widely, many species are confined to small parts of their historic range. We cannot just assume that they have clung on in optimal habitat, where they live now may just be a historical accident. Conservation needs to explicitly test where and how species do best, or it may squander its limited resources and the best chances we have to prevent extinctions.The Conversation

, Postdoctoral researcher, and , University Research Fellow,

This article is republished from under a Creative Commons license. Read the .

Image credit: Nick Harvey Sky

]]>
Mon, 22 Jul 2024 13:59:36 +0100 https://content.presspage.com/uploads/1369/500_rhinosinkenyacredit-nickharveysky.jpg?10000 https://content.presspage.com/uploads/1369/rhinosinkenyacredit-nickharveysky.jpg?10000
Rising stars in research honoured with Future Leaders Fellowships /about/news/two-manchester-researchers-made-future-leaders-fellows/ /about/news/two-manchester-researchers-made-future-leaders-fellows/652429Two rising stars from 鶹 have been honoured with Future Leaders Fellowships by UK Research and Innovation.

]]>
Two rising stars from 鶹 have been honoured with Future Leaders Fellowships by UK Research and Innovation.

In total 68  of the most promising research leaders will be funded £104 million to lead research into global issues and to commercialise their innovations in the UK.

UKRI’s flagship Future Leaders Fellowships allow universities and businesses to develop their most talented early career researchers and innovators and to attract new people to their organisations, including from overseas.

Dr Fiona Whelan is a Senior Lecturer in Computational Biology and Bioinformatics at 鶹 whose research focusses on combining classical microbiology techniques with cutting-edge bioinformatic methodologies.

Fiona was previously a University of Nottingham Anne McLaren Fellow (2020-3) and Marie Skłodowska-Curie Independent Fellow (2018-20). She moved to the UK from McMaster University, Canada where she conducted her PhD research on the human microbiome.

She said: “I am so excited to join this cohort of UKRI Future Leaders Fellows. My research programme – focussed on understanding how bacterial interactions within mixed microbial communities contribute to pathogenicity and disease progression in cystic fibrosis – is interdisciplinary in nature.

“This Fellowship gives me the unique opportunity to assemble a world-leading, interdisciplinary team who will have the experience and expertise to answer these important questions and – ultimately – hopefully improve the lives of individuals with cystic fibrosis.”

Dr Laura Richards, a Dame Kathleen Ollerenshaw Fellow based at the Department of Earth and Environmental Sciences, University of 鶹, has been awarded a UKRI Future Leaders Fellowship to launch a project called AQUAROAD.

AQUAROAD aims to create a roadmap towards improved groundwater quality management in the context of the Global South by bringing together interdisciplinary approaches to understand (bio)geochemical controls and to support evidence-based decision making for effective remediation strategies for water supplies used for drinking.

The approach, aligned with the UN Sustainable Development Goals, will be developed and demonstrated in contrasting areas in India and East Africa, with flexibility for future adaptation.

Dr Richards said: “I’m thrilled and deeply grateful to have been awarded a Future Leaders Fellowship. This fellowship is an exciting springboard for ambitious research with an excellent network of collaborators and potential for positive impact on society.”

UKRI Chief Executive, Professor Dame Ottoline Leyser, said: “UKRI’s Future Leaders Fellowships provide researchers and innovators with long-term support and training to develop ambitious, transformative ideas.

“The programme supports the research and innovation leaders of the future to transcend disciplinary and sector boundaries, bridging the gap between academia and business.  

The fellows announced today demonstrate how these awards continue to drive excellence, and to shorten the distance from discovery to prosperity and public good.”

]]>
Thu, 18 Jul 2024 09:00:00 +0100 https://content.presspage.com/uploads/1369/2fdeddc2-e6d4-497b-9aff-2873c92e849e/500_futureleaders.jpg?10000 https://content.presspage.com/uploads/1369/2fdeddc2-e6d4-497b-9aff-2873c92e849e/futureleaders.jpg?10000
Scientists make breakthrough in development of fridge-free storage for vital medicines /about/news/scientists-make-breakthrough-in-development-of-fridge-free-storage-for-vital-medicines/ /about/news/scientists-make-breakthrough-in-development-of-fridge-free-storage-for-vital-medicines/652258Scientists have developed a new approach to store and distribute crucial protein therapeutics without the need for fridges or freezers.

]]>
Scientists have developed a new approach to store and distribute crucial protein therapeutics without the need for fridges or freezers.

The breakthrough, published in the journal , could significantly improve accessibility of essential protein-based drugs in developing countries where cold storage infrastructure may be lacking, helping efforts to diagnose and treat more people with serious health conditions.

The researchers, from the Universities of 鶹, Glasgow and Warwick, have designed a hydrogel – a material mostly made of water – that stabilises proteins, protecting its properties and functionality at temperatures as high as 50°C.

The technology keeps proteins so stable that they can even be sent through the post with no loss of effectiveness, opening up new possibilities for more affordable, less energy-intensive methods of keeping patients and clinics supplied with vital treatments.

Protein therapeutics are used to treat a range of conditions, from cancer to diabetes and most recently to treat obesity and play a vital role in modern medicine and biotechnology. However, keeping them stable and safe for storage and transportation is a challenge. They must be kept cold to prevent any deterioration, using significant amounts of energy and limiting equitable distribution in developing countries.

The medicines also often include additives – called excipients – which must be safe for the drug and its recipients limiting material options.

The findings could have major implications for the diagnostics and pharmaceutical industries.

, is one of the paper’s corresponding authors. He said: “In the early days of the Covid vaccine rollout, there was a lot of attention given in the news media to the challenges of transporting and storing the vaccines, and how medical staff had to race to put them in people’s arms quickly after thawing.  

“The technology we’ve developed marks a significant advance in overcoming the challenges of the existing ‘cold chain’ which delivers therapeutic proteins to patients. The results of our tests have very encouraging results, going far beyond current hydrogel storage techniques’ abilities to withstand heat and vibration. That could help create much more robust delivery systems in the future, which require much less careful handling and temperature management.”

The hydrogel is built from a material called a low molecular weight gelator (LMWG), which forms a three-dimensional network of long, stiff fibres. When proteins are added to the hydrogel, they become trapped in the spaces between the fibres, where they are unable to mix and aggregate – the process which limits or prevents their effectiveness as medicines.

The unique mechanical properties of the gel’s network of fibres, which are stiff but also brittle, ensures the easy release of a pure protein. When the protein-storing gel is stored in an ordinary syringe fitted with a special filter, pushing down on the plunger provides enough pressure to break the network of fibres, releasing the protein. The protein then passes cleanly through the filter and out the tip of the syringe alongside a buffer material, leaving the gel behind.

In the paper, the researchers show how the hydrogel works to store two valuable proteins: insulin, used to treat diabetes, and beta-galactosidase, an enzyme with numerous applications in biotechnology and life sciences.

Ordinarily, insulin must be kept cold and still, as heating or shaking can prevent it from being an effective treatment. The team tested the effectiveness of their hydrogel suspension for insulin by warming samples to 25°C and rotating them at 600 revolutions per minute, a strain test far beyond any real-world scenario. Once the tests were complete, the team were able to recover the entire volume of insulin from the hydrogel, showing that it had been protected from its rough treatment.

The team then tested samples of beta-galactosidase in the hydrogel, which was stored at a temperature of 50°C for seven days, a level of heat exceeding any realistic temperature for real-world transport. Once the enzyme was extracted from the hydrogel, the team found it retained 97% of its function compared against a fresh sample stored at normal temperature.

A third test saw the team put samples of proteins suspended in hydrogel into the post, where they spent two days in transit between locations. Once the sample arrived at its destination, the team’s analysis showed that the gels’ structures remained intact and the proteins had been entirely prevented from aggregating.

is the paper’s other corresponding author. He said: “Delivering and storing proteins intact is crucial for many areas of biotechnology, diagnostics and therapies. Recently, it has emerged that hydrogels can be used to prevent protein aggregation, which allows them to be kept at room temperature, or warmer. However, separating the hydrogel components from the protein or proving that they are safe to consume is not always easy. Our breakthrough eliminates this barrier and allows us to store and distribute proteins at room temperature, free from any additives, which is a really exciting prospect.”

The team are now exploring commercial opportunities for this patent-pending technology as well as further demonstrating its applicability. 

Researchers from the University of East Anglia and Diamond Light Source Ltd also contributed to the research. The team’s paper, titled ‘Mechanical release of homogenous proteins from supramolecular gels’, is published in Nature.

The research was supported by funding from the European Union’s Horizon 2020 programme, the European Research Council, the Royal Society, the Engineering and Physical Sciences Research Council (EPSRC), the University of Glasgow and UK Research and Innovation (UKRI).

]]>
Wed, 17 Jul 2024 16:00:00 +0100 https://content.presspage.com/uploads/1369/1488532e-faa5-4fcb-a9eb-01271f288357/500_mib-0896.jpg?10000 https://content.presspage.com/uploads/1369/1488532e-faa5-4fcb-a9eb-01271f288357/mib-0896.jpg?10000
University of 鶹 helps secure £34 million for transformative UK life sciences data project /about/news/university-of-manchester-helps-secure-34-million-for-transformative-uk-life-sciences-data-project/ /about/news/university-of-manchester-helps-secure-34-million-for-transformative-uk-life-sciences-data-project/651876Academics at 鶹 have been at the forefront of securing a transformative project set to revolutionise UK life sciences research.

]]>
Academics at 鶹 have been at the forefront of securing a transformative project set to revolutionise UK life sciences research.

Today, UK Research and Innovation (UKRI), has announced £34 million investment in a ground-breaking project, BioFAIR, which aims to overhaul research data management across the nation.

The project, initially proposed by the ELIXIR-UK community, which is co-led by Professor Carole Goble from 鶹, aims to establish a cohesive, UK-wide digital research infrastructure that bridges current gaps between researchers, digital research technical professionals, existing institutional digital research infrastructures, and the funder-community partnership.

It will deliver a step change in the UK’s capability to translate existing and future life science data assets into world leading research in response to some of society’s most pressing challenges.

ELIXIR-UK is the UK Node of ELIXIR, a European project to integrate life sciences data across the continent with the aim of facilitating the linking of data worldwide. Professor Goble has been co-leading on the business case and investment activity for the project in partnership with the Earlham Institute and UKRI over the last six years and has played an instrumental role in securing the award for the UK. She is also leading the architecture requirements development of the BioFAIR Commons.

BioFAIR will be a catalyst for innovation and discovery and over its five-year life span will:

  • accelerate the adoption of findable, accessible, interoperable and reusable (FAIR) data principles across the UK life sciences, making it more useful and valuable to researchers than ever before
  • unify the UK’s currently fragmented digital research landscape, fostering unprecedented opportunities for collaboration and coordination among the national life sciences community
  • break down barriers to democratise data accessibility, giving UK researchers the resources and autonomy needed for innovation and discovery to flourish
  • coordinate and deliver extensive training and support for practitioners at all levels, building critical workforce capacity and securing the UK’s position as a global leader in life sciences

Fundamental to the BioFAIR concept are its four key capabilities. Each will be assembled from existing data tools and services developed and deployed by the UK and international life science research communities.

Collectively, the four capabilities signify an important ethos of one community driving and sharing responsibility for the management and use of national assets to maximise accessibility, usability and impact.

The data commons will catalogue sources of existing datasets, making them easily accessible to life science researchers. It will support FAIR data management throughout the data lifecycle, from the point of collection to deposition and, crucially, to reuse.

The method commons will enable the collaborative use of shared computational workflows with a national workflow capability. It will feature a national repository of trusted and curated data methods and workflows, contributed by the life sciences research community, supporting reproducible data analytics and advancing

The community centre will provide a focal point for sharing expertise, best practice and troubleshooting within disciplines.

The knowledge centre will enable those driving the collection and curation of existing knowledge resources and training materials to advance best practice in research data management.

Together, the community and knowledge centres will create a collaborative environment that supports more effective dissemination of research data management knowledge and skills across the life sciences research community.

Mission critical 

Put simply, BioFAIR is mission critical to the future of UK life sciences research. At its core the project will deliver major efficiency gains by streamlining research data management.

By better connecting research teams and championing the reuse of data and methods, BioFAIR will help accelerate research, leading to faster scientific breakthroughs as a result.

But BioFAIR adds significantly more value than efficiency alone. It will:

  • pioneer innovation, with its state-of-the-art tools and methods paving the way for future scientific success
  • future-proof the UK life sciences ecosystem by integrating advanced computational tools and methods to set the stage for new innovations that can be translated and commercialised for maximum impact
  • support economic growth and prosperity by upskilling the life sciences research data management workforce and enabling new opportunities for the UK’s scientific leadership

Community driven from the outset, the concept of BioFAIR originated as an idea submitted to BBSRC’s by the ELIXIR-UK team.

This collaborative ethos remains at the heart of BioFAIR, complemented by additional UK and international initiatives to ensure best practices are shared and interoperability across disciplines is promoted.

BioFAIR’s success heavily relies upon the combined ability and proven track record of the UK life science research community in developing and operating research data management tools and services. 

As the awarded hosts of BioFAIR’s coordinating hub, the Earlham Institute’s strengths will be complemented by a skilled and distributed network of UK partners responsible for project leadership and delivery.

Dr Sarah Perkins, Executive Director for Strategic Planning, Evidence and Engagement at BBSRC and the UKRI Senior Responsible Officer for BioFAIR, said: “Digital research infrastructure has fast become as critical to UK bioscience as physical infrastructure. 

“The BioFAIR project will provide the backbone for ground-breaking research, enabling researchers to tackle key societal challenges head-on. By democratising access to crucial data and methods, BioFAIR ensures that the UK life science community can innovate faster and more effectively than ever before.”

Gerry Reilly, Interim Director of BioFAIR, said: “Our vision is to create a powerful federated digital research infrastructure that revolutionises UK life science research. By leveraging established best practices and capabilities, we will build a national platform that ensures the effective adoption of FAIR principles and drives efficiency across all UK life science research institutions. 

“Developed by the research community for the research community, BioFAIR will transform the future face of the UK life sciences.”

or email your questions to info@biofair.uk.

]]>
Thu, 11 Jul 2024 10:06:57 +0100 https://content.presspage.com/uploads/1369/76ee4078-df90-420a-9727-c0b3fc245231/500_biofair.jpg?10000 https://content.presspage.com/uploads/1369/76ee4078-df90-420a-9727-c0b3fc245231/biofair.jpg?10000
鶹 scientists pave way for greener cancer treatments with new enzyme discovery /about/news/manchester-scientists-pave-way-for-greener-cancer-treatments-with-new-enzyme-discovery/ /about/news/manchester-scientists-pave-way-for-greener-cancer-treatments-with-new-enzyme-discovery/651454Scientists from 鶹 have uncovered a more efficient and sustainable way to make peptide-based medicines, showing promising effectiveness in combating cancers.

]]>
Scientists from 鶹 have uncovered a more efficient and sustainable way to make peptide-based medicines, showing promising effectiveness in combating cancers.

Peptides are comprised of small chains of amino acids, which are also the building blocks of proteins. Peptides play a crucial role in our bodies and are used in many medicines to fight diseases such as cancer, diabetes, and infections. They are also used as vaccines, nanomaterials and in many other applications. However, making peptides in the lab is currently a complicated process involving chemical synthesis, which produces a lot of harmful waste that is damaging to the environment.

In a new breakthrough, published in the journal , 鶹 scientists have discovered a new family of ligase enzymes – a type of molecular glue that can help assemble short peptide sequences more simply and robustly, yielding significantly higher quantities of peptides compared to conventional methods.

The breakthrough could revolutionise the production of treatments for cancer and other serious illnesses, offering a more effective and environmentally friendly method of production.

For many years, scientists have been working on new ways to produce peptides. Most existing techniques rely on complex and heavily protected amino acid precursors, toxic chemical reagents, and harmful volatile organic solvents, generating large amounts of hazardous waste. The current methods also incur high costs, and are difficult to scale up, resulting in limited and expensive supplies of important peptide medicines.

The team in 鶹 searched for new ligase enzymes involved in the biological processes that assemble natural peptides in simple bacteria. They successfully isolated and characterised these ligases and tested them in reactions with a wide range of amino acid precursors. By analysing the sequences of the bacterial ligase enzymes, the team identified many other clusters of ligases likely involved in other peptide pathways.

The study provides a blueprint for how peptides, including important medicines, can be made in the future.

, who also worked on the project said, “The ligases we discovered provide a very clean and efficient way to produce peptides. By searching through available genome sequence data, we have found many types of related ligase enzymes. We are confident that using these ligases we will be able to assemble longer peptides for a range of other therapeutic applications.”

Following the discovery, the team will now optimise the new ligase enzymes, to improve their output for larger scale peptide synthesis. They have also established collaborations with a number of the top pharmaceutical companies to help with rolling out the new ligase enzyme technologies for manufacturing future peptide therapeutics.

]]>
Mon, 08 Jul 2024 13:54:18 +0100 https://content.presspage.com/uploads/1369/df893998-1367-4a30-8446-5713e399b5c7/500_mib-0920.jpg?10000 https://content.presspage.com/uploads/1369/df893998-1367-4a30-8446-5713e399b5c7/mib-0920.jpg?10000
Winners announced for the Eli & Britt Harari Graphene Enterprise Award 2024 /about/news/winners-announced-for-the-eli--britt-harari-graphene-enterprise-award-2024/ /about/news/winners-announced-for-the-eli--britt-harari-graphene-enterprise-award-2024/651229The Masood Entrepreneurship Centre (MEC) is pleased to announce the winners of the Eli & Britt Harari Graphene Enterprise Award 2024.

]]>
The Masood Entrepreneurship Centre (MEC) is pleased to announce the winners of the Eli & Britt Harari Graphene Enterprise Award 2024.

This prestigious award is designed to support students, postdoctoral researchers, recent graduates, and encourage new student cohorts to engage with MEC, in launching new businesses that involve graphene or other 2D materials. It’s all about sparking innovation and making a real impact in the commercial world, turning groundbreaking research into real, game-changing solutions for the future.

With awards of £50,000 and £20,000, we’re excited to celebrate the individuals or teams who showed how their graphene-related technology can be turned into a business. The applications were judged based on how solid their plans were for creating a new business related to graphene or 2D materials.

This award gives winners the perfect launchpad they need to kickstart their business. 鶹 understands how crucial flexible early-stage financial support is for these kinds of ventures, to help make these dreams a reality and bring a product or technology to the market.

This year, the top prize of £50,000 went to Kun Huang of Solar Ethos. Kun has a Master’s degree in Corrosion Control Engineering and a PhD in Material Physics. The second prize of £20,000 was awarded to Hafiza Hifza Nawaz of Fabstics, who has a PhD in Materials. We also congratulate the other finalists - Mohammadhossein Saberian of EcoTarTech and Ozan Zehni of Dorlion SHM.

EH24_Solar EthosEH24_Fabstics

 

 

 

 

 

 

The winners, pictured above with Deputy Vice-Chancellor & Deputy President Luke Georghiou:

  • Left: First place - Solar Ethos
  • Right: Second place - Fabstics

All finalists received support throughout the competition, which included: pitching workshops, help with applications by Scott Dean (CEO of Graphene Trace), and IP advice from Innovation Factory. These resources were key in helping them navigate the challenges of starting a business and turning their groundbreaking ideas into real-world solutions.

Our top-tier judges included Professor Luke Georghiou, Deputy President and Deputy Vice-Chancellor at 鶹; Lynn Sheppard, Masood Entrepreneurship Centre Director; Jessica McCreadie, Investment Director at Northern Gritstone; James Baker, CEO Graphene @鶹 at 鶹; and Gareth Jones, Project Manager - Electronics at 鶹 Innovation Factory. Their expertise and dedication to encouraging innovation played a key role in choosing projects that could make a big difference.

We offer a huge congratulations to all the participants! We can’t wait to see the fantastic impact of their innovative work in the commercial world. By supporting these entrepreneurs, we're not only helping them achieve their dreams but also paving the way for future advancements that can tackle some of the world's most pressing challenges.

Along with the awards, we heard inspiring speeches from high-profile individuals such as Lynn Sheppard, Professor James Baker, Dr. Vivek Koncherry, Liam Johnson, and Professor Luke Georghiou. They shared amazing insights about graphene and other 2D materials, emphasising the transformative potential of these technologies and the importance of ongoing innovation. We were also joined via Zoom from California by Dr. Eli Harari, founder of SanDisk, the memory storage technology company. He encouraged attendees to "Think Big!".

Eli & Britt Harari Award 2021 winner Dr. Vivek Koncherry, the CEO of Graphene Innovations 鶹, is making significant strides in connecting graphene technology with global business opportunities. Last year, he signed a $1 billion partnership with Quazar Investment Company to create a new company in the UAE aimed at tackling global sustainability challenges. Recognised as 鶹's answer to Elon Musk, Vivek recently impressed judges to win the North West heat of KPMG’s Tech Innovator in the UK 2024. With a strong background as an alumnus and researcher from 鶹, Vivek exemplifies the spirit of entrepreneurship and innovation.

Some notable quotes about the competition include Lynn Sheppard's encouragement, "For all the winners and nominees, your journey does not stop here, it goes on," and Prof. James Baker's insight, "Graphene can make a big difference in addressing the climate change challenges." Dr. Vivek Koncherry highlighted 鶹's entrepreneurial spirit by stating, "鶹 is very good for entrepreneurship," while Dr. Eli Harari inspired with, "We need people like you to aspire in making the world better." Liam Johnson appreciated the award's impact, saying, "The award allowed me to turn this idea to something tangible," and Prof. Luke Georghiou emphasised the importance of support with, "It's our duty to build an ecosystem to support the development of graphene."

Their words emphasised the event's theme of driving change and shaping a brighter future through cutting-edge research and entrepreneurship, wrapping up the event on an exhilarating high.

]]>
Thu, 04 Jul 2024 15:30:00 +0100 https://content.presspage.com/uploads/1369/1aafbd44-ad0d-408f-b228-efeab8c0af3d/500_eh24-thumbnail.jpg?10000 https://content.presspage.com/uploads/1369/1aafbd44-ad0d-408f-b228-efeab8c0af3d/eh24-thumbnail.jpg?10000
New balloon-borne spectrometer project to revolutionise our understanding of the earliest days of the Cosmos /about/news/new-balloon-borne-spectrometer-project-to-revolutionise-our-understanding-of-the-earliest-days-of-the-cosmos/ /about/news/new-balloon-borne-spectrometer-project-to-revolutionise-our-understanding-of-the-earliest-days-of-the-cosmos/640221A massive balloon, designed to measure the background radiation left over from the ‘Big Bang’ and help scientists better understand the infancy and evolution of our Universe, has.

]]>
A massive balloon, designed to measure the background radiation left over from the ‘Big Bang’ and help scientists better understand the infancy and evolution of our Universe, has just

Thirty years after the Cosmic Microwave Background (CMB) spectrum was first precisely characterised by NASA's Cosmic Background Explorer (COBE) mission, a new experiment – known as BISOU (for Balloon Interferometer for Spectral Observations of the Universe) – is expected to significantly advance these measurements, gaining a factor of ~25 in sensitivity.

If successful, the results could provide unprecedented insights into the Universe's thermal history, validate predictions of the standard Big Bang Theory and potentially reveal new physics beyond our current understanding, marking a transformational step towards an ambitious future space-based CMB spectrometer to form part of the .

The CMB is leftover radiation from the time when the Universe began. Although the CMB is everywhere in the Universe, humans can't see it with the naked eye. But, using specialist equipment, it can be made visible even through the atmosphere’s curtain, offering novel insights into the Universe’s earliest moments.  

While the CMB’s near-perfect blackbody spectrum was first accurately measured three decades ago, and space missions such as WMAP and Planck have since revolutionised our understanding of the Universe by mapping the spatial variations in CMB temperature and linear polarisation across the sky, tiny deviations in the CMB known as spectral distortions remain largely unexplored. These distortions, predicted by theory, carry vital information about various cosmic processes in regimes that have not previously been explored.

With BISOU, scientists are intensively working on a new balloon-borne differential spectrometer to measure the distortions. The Phase 0 study, which concluded earlier this year, has already demonstrated the feasibility. Now, moving into Phase A, over the next two years, the consortium of researchers from France, Italy, Ireland, Spain, the UK, the USA and Japan, will finalise the detailed concept of the BISOU stratospheric balloon project before hopefully taking it to the skies in 2028/29.

The specialist equipment – a so-called Fourier Transform Spectrometer - builds on the long heritage of the COBE/FIRAS instrument and leverages insights from earlier studies like NASA's PIXIE and the European Space Agency's FOSSIL mission proposals.

The project is coordinated by Professor Bruno Maffei and the Institute of Space Astrophysics (IAS  - Institut d’Astrophysique Spatiale) Cosmology team and is funded by the French National Centre for Space Studies (CNES), which recently announced the transition of BISOU to Phase A.

]]>
Thu, 27 Jun 2024 08:46:05 +0100 https://content.presspage.com/uploads/1369/230d20ad-294d-4ffe-b1bf-fa62a2016184/500_screenshot-25-6-2024-85544-.jpeg?10000 https://content.presspage.com/uploads/1369/230d20ad-294d-4ffe-b1bf-fa62a2016184/screenshot-25-6-2024-85544-.jpeg?10000
Electric fields catalyse graphene’s energy and computing prospects /about/news/electric-fields-catalyse-graphenes-energy-and-computing-prospects/ /about/news/electric-fields-catalyse-graphenes-energy-and-computing-prospects/637052Researchers at the have made a groundbreaking discovery that could revolutionise energy harnessing and information computing. Their study, published in , reveals how electric field effects can selectively accelerate coupled electrochemical processes in graphene.

]]>
Researchers at the have made a groundbreaking discovery that could revolutionise energy harnessing and information computing. Their study, published in , reveals how electric field effects can selectively accelerate coupled electrochemical processes in graphene.

Electrochemical processes are essential in renewable energy technologies like batteries, fuel cells, and electrolysers. However, their efficiency is often hindered by slow reactions and unwanted side effects. Traditional approaches have focused on new materials, yet significant challenges remain.

The 鶹 team, led by , has taken a novel approach. They have successfully decoupled the inseparable link between charge and electric field within graphene electrodes, enabling unprecedented control over electrochemical processes in this material. The breakthrough challenges previous assumptions and opens new avenues for energy technologies.

Dr Marcelo Lozada-Hidalgo sees this discovery as transformative, “We’ve managed to open up a previously inaccessible parameter space. A way to visualise this is to imagine a field in the countryside with hills and valleys. Classically, for a given system and a given catalyst, an electrochemical process would run through a set path through this field. If the path goes through a high hill or a deep valley – bad luck. Our work shows that, at least for the processes we investigated here, we have access to the whole field. If there is a hill or valley we do not want to go to, we can avoid it.”

The study focuses on proton-related processes fundamental for hydrogen catalysts and electronic devices. Specifically, the team examined two proton processes in graphene:

Proton Transmission: This process is important for developing new hydrogen catalysts and fuel cell membranes.

Proton Adsorption (Hydrogenation): Important for electronic devices like transistors, this process switches graphene’s conductivity on and off.

Traditionally, these processes were coupled in graphene devices, making it challenging to control one without impacting the other. The researchers managed to decouple these processes, finding that electric field effects could significantly accelerate proton transmission while independently driving hydrogenation. This selective acceleration was unexpected and presents a new method to drive electrochemical processes.

Highlighting the broader implication in energy applications, Dr Jincheng Tong, first author of the paper, said “We demonstrate that electric field effects can disentangle and accelerate electrochemical processes in 2D crystals. This could be combined with state-of-the-art catalysts to efficiently drive complex processes like CO2 reduction, which remain enormous societal challenges.”

Dr Yangming Fu, co-first author, pointed to potential applications in computing: “Control of these process gives our graphene devices dual functionality as both memory and logic gate. This paves the way for new computing networks that operate with protons.  This could enable compact, low-energy analogue computing devices.”

Since publication, a review of the paper was included in Nature’s News & Views section, which summarises high-impact research and provides a forum where scientific news is shared with a wide audience spanning a range of disciplines: .

 

The National Graphene Institute (NGI) is a world-leading graphene and 2D material centre, focussed on fundamental research. Based at 鶹, where graphene was first isolated in 2004 by Professors Sir Andre Geim and Sir Kostya Novoselov, it is home to leaders in their field – a community of research specialists delivering transformative discovery. This expertise is matched by £13m leading-edge facilities, such as the largest class 5 and 6 cleanrooms in global academia, which gives the NGI the capabilities to advance underpinning industrial applications in key areas including: composites, functional membranes, energy, membranes for green hydrogen, ultra-high vacuum 2D materials, nanomedicine, 2D based printed electronics, and characterisation.

]]>
Wed, 19 Jun 2024 16:05:00 +0100 https://content.presspage.com/uploads/1369/8fcb7913-5492-48f1-aecd-21201e89d2bd/500_guoyanwangandyanliangfromuniversityofscienceandtechnologyofchina.png?10000 https://content.presspage.com/uploads/1369/8fcb7913-5492-48f1-aecd-21201e89d2bd/guoyanwangandyanliangfromuniversityofscienceandtechnologyofchina.png?10000
鶹 engineers unlock design for record-breaking robot that could jump over the height of Big Ben /about/news/manchester-engineers-unlock-design-for-record-breaking-robot-that-could-jump-twice-the-height-of-big-ben/ /about/news/manchester-engineers-unlock-design-for-record-breaking-robot-that-could-jump-twice-the-height-of-big-ben/636756Engineers at 鶹 have unlocked the secrets to designing a robot capable of jumping 200 metres in the air – higher than any other jumping robot designed to date.

]]>
Engineers at 鶹 have unlocked the secrets to designing a robot capable of jumping 120 metres – higher than any other jumping robot designed to date.

Using a combination of mathematics, computer simulations, and laboratory experiments, the researchers have discovered how to design a robot with the optimum size, shape and the arrangement of its parts, allowing it to jump high enough to clear obstacles many times its own size.

The current highest-jumping robot can reach up to 33 metres, which is equivalent to 110 times its own size. Now, researchers have found out how to design a robot that could jump over 120 metres in the air – that’s more than the height of Big Ben’s tower.

The advancement, published in the journal , will revolutionise applications ranging from planetary exploration to disaster rescue to surveillance of hazardous or inaccessible spaces.

Co-author , Research Associate in Space Robotics at 鶹, said: “Robots are traditionally designed to move by rolling on wheels or using legs to walk, but jumping provides an effective way of travelling around locations where the terrain is very uneven, or where there are a lot of obstacles, such as inside caves, through forests, over boulders, or even the surface of other planets in space.

“While jumping robots already exist, there are several big challenges in the design of these jumping machines, the main one being to jump high enough to overcome large and complicated obstacles. Our design would dramatically improve the energy efficiency and performance of spring-driven jumping robots.”

The researchers found that traditional jumping robots often take off before fully releasing their stored spring energy, resulting in inefficient jumps and limiting their maximum height. They also found that they wasted energy by moving side to side or rotating instead of moving straight up.

The new designs must focus on removing these undesirable movements while maintaining the necessary structural strength and stiffness.

Co-author, Senior Lecturer in Aerospace Engineering, said: “There were so many questions to answer and decisions to make about the shape of the robot, such as should it have legs to push off the ground like a kangaroo, or should it be more like an engineered piston with a giant spring? Should it be a simple symmetrical shape like a diamond, or should it be something more curved and organic? Then, after deciding this we need to think about the size of the robot – small robots are light and agile, but then large robots can carry bigger motors for more powerful jumps, so is the best option somewhere in the middle?

“Our structural redesigns redistribute the robot’s component mass towards the top and taper the structure towards the bottom. Lighter legs, in the shape of a prism and using springs that only stretch are all properties that we have shown to improve the performance and most importantly, the energy efficiency of the jumping robot.”

Although the researchers have found a practicable design option to significantly improve performance, their next goal is to control the direction of the jumps and find out how to harness the kinetic energy from its landing to improve the number of jumps the robot can do in a single charge. They will also explore more compact designs for space missions, making the robot easier to transport and deploy on the moon.

]]>
Mon, 17 Jun 2024 14:27:30 +0100 https://content.presspage.com/uploads/1369/fec72e7c-6cf6-4ac7-8436-33f472e63209/500_untitleddesign7.png?10000 https://content.presspage.com/uploads/1369/fec72e7c-6cf6-4ac7-8436-33f472e63209/untitleddesign7.png?10000
Four 鶹 Professors recognised in King’s Birthday Honours list /about/news/three-manchester-professors-recognised-in-kings-birthday-honours-list/ /about/news/three-manchester-professors-recognised-in-kings-birthday-honours-list/636619Four professors from 鶹 have been recognised in the King’s Birthday Honours in recognition of their extraordinary contributions and service.

]]>
Four professors from 鶹 have been recognised in the King’s Birthday Honours in recognition of their extraordinary contributions and service.

has been awarded an OBE for his services to public health, to epidemiology and to adult social care, particularly during Covid-19, has been awarded an OBE for his for services to the advancement of the science of radiation protection, Professor Paul Klapper has been awarded an OBE for services to viral diagnostic testing, and Professor Paul Howarth has been awarded a CBE for his significant contribution and service to the nuclear industry and to UK research and development (R&D).

The list celebrates individuals who have had an immeasurable impact on the lives of people across the country - such as by creating innovative solutions or driving real change in public life.

Ian HallIan Hall is a Professor of Mathematical Epidemiology and Statistics at 鶹. He is a long-standing member of SPI-M (the pandemic disease modelling advisory group) and played a critical role in the operations of this group during the swine flu and Covid-19 pandemics.

During the Covid-19 pandemic he was academic chair of the SAGE working group of Social Care and participated in the SAGE Environmental Modelling Group as well as attending SAGE itself. He was also involved in a number of research projects, including the national core study on transmission () and Project TRACK to understand and control the risks on public transport. He also helped analyse data from a new heat map, providing a national picture of the spread over time.

Since the pandemic, Professor Hall has continued working with UKHSA through an honorary contract, notably with Health Equity Division on vaccination strategies in prison and homeless settings.

His other research interests include the impact of diseases on vulnerable populations and the study of vector-borne infectious diseases and environmental infections, such as Legionnaires Disease.

Richard WakefordRichard Wakeford is an Honorary Professor in Epidemiology in the Centre for Occupational and Environmental Health (COEH), having been Professor in Epidemiology at the Centre before retiring at the end of 2019. He specialises in the epidemiology of exposure to ionising radiation, particularly as related to radiological protection.

Professor Wakeford is a member of various committees, including the UN Scientific Committee on the Effects of Atomic Radiation and the International Commission on Radiological Protection. He was a member of the Scientific Advisory Group for Emergencies (SAGE) following the Fukushima nuclear accident in Japan, and for 25 years was Editor-in-Chief of the Journal of Radiological Protection.

Richard completed his PhD in high energy physics at the University of Liverpool in 1978 and worked for British Nuclear Fuels Ltd (BNFL) for nearly 30 years. It was the many challenges faced at BNFL where he developed his skills in radiation epidemiology and radiological protection. He was privileged to work with Sir Richard Doll during this time. After taking early retirement from BNFL, Richard joined the University, initially through an association with Dalton Nuclear Institute and then joining COEH.

Paul KlapperPaul Klapper is Professor of Clinical Virology at 鶹. He began his career in virology in 1976 working as a laboratory technician at Booth Hall Children’s Hospital. He completed his PhD while working at 鶹 Royal Infirmary on the diagnosis of herpes simplex encephalitis - a topic he continued to work on for over 20 years and led to the development of a reliable molecular diagnostic test for the condition. He also helped establish independent quality assurance testing in the infancy of viral molecular diagnostic testing. 

Throughout his career, Professor Klapper has been at the forefront of several key developments of viral diagnostic testing. Notably, he worked with the Greater 鶹 Hepatitis C testing strategy, developing community-based testing methods to aid control of the HCV pandemic. In 1981, he became an NHS Clinical Scientist, working in both 鶹 and Leeds as a Consultant Clinical Scientist. Ten years later, in 1991 became a Fellow of the Royal College of Pathology. 

On retiring from the NHS in 2012, Professor Klapper joined 鶹 as a Professor of Clinical Virology.  Early in 2020, he volunteered to help with establishment of large scale Covid-19 testing and became the clinical lead for the Alderley Park testing facility. He also served as a Clinical Advisor for testing with the Department of Health.

 Professor Klapper continues to conduct vital research in blood-borne virus infection and in congenital human cytomegalovirus infection.

Paul HowarthPaul Howarth is Professor of Nuclear Technology at 鶹 and Chief Executive of National Nuclear Laboratory. 

Professor Howarth has had a distinguished career working in and for the nuclear sector, building a reputation as one of the leading figures in the UK nuclear sector and around the global industry. After completing his degree in Physics and Astrophysics and PhD in Nuclear Physics, he started his career working on the European Fusion Programme. Early in his career he was awarded a prestigious Royal Society Fellowship to work in Japan on their nuclear programme. On returning to the UK he continued to work on nuclear fission leading the UK’s advanced reactor programme while working at British Nuclear Fuels, co-founding the at the University  and working closely with UK Government on building the case for new nuclear build.

Professor Howarth was appointed CEO for the National Nuclear Laboratory (NNL) in 2011 following its creation as a public corporation, having been instrumental in its establishment from British Nuclear Fuels Limited (BNFL). During his tenure as CEO, NNL has been transformed into a successful business and a true national laboratory, delivering profits to reinvest into nuclear science and technology and critical support to nuclear organisations in the public and private sectors. 

The birthday honours are awarded by the King following recommendations by the prime minister, senior government ministers, or members of the public.

The awards recognise active community champions, innovative social entrepreneurs, pioneering scientists, passionate health workers and dedicated volunteers who have made significant achievements in public life or committed themselves to serving and helping Britain.

To see the full Birthday Honours List 2024, visit: https://www.gov.uk/government/publications/the-kings-birthday-honours-list-2024  

]]>
Fri, 14 Jun 2024 22:30:00 +0100 https://content.presspage.com/uploads/1369/42d5591d-a418-47d7-83b5-b80a7f8986ff/500_untitleddesign6.png?10000 https://content.presspage.com/uploads/1369/42d5591d-a418-47d7-83b5-b80a7f8986ff/untitleddesign6.png?10000
Seven researchers secure funding through the flagship Researcher to Innovator (R2I) programme to continue developing their commercial ideas /about/news/seven-researchers-secure-funding-through-the-flagship-researcher-to-innovator-r2i-programme-to-continue-developing-their-commercial-ideas/ /about/news/seven-researchers-secure-funding-through-the-flagship-researcher-to-innovator-r2i-programme-to-continue-developing-their-commercial-ideas/636927Twenty two early career researchers have now successfully completed Cohort 2 of the 2023-24 the Researcher to Innovator (R2I) programme.

]]>
Twenty two early career researchers have now successfully completed the Researcher to Innovator (R2I) programme, an exciting entrepreneurship training programme for researchers with ambitions to develop commercial ventures and create impact from their academic studies.

The Options Roundabout event on the 12th June 2024 was the culmination of the R2I programme which saw our researchers pitch to a panel of entrepreneurs, funders and commercialisation experts. The event which was an opportunity for the cohort to network and celebrate their achievements was hosted in our MEC Enterprise Zone, a dedicated entrepreneurship space in the Alliance 鶹 Business School. 

The R2I programme aims to inspire and accelerate the translation of the knowledge created through academic research into products, services or processes to deliver tangible benefit through a series of bespoke workshops and mentoring opportunities. The workshops helped researchers articulate their ideas by taking them through a lean start-up pathway to explore the commercial potential of their research.

The Innovation Enabling Awards were granted to acknowledge the impact and growth potential with early career researchers receiving between £2000 to £8000 to further develop the commercial potential of their ideas and businesses.

Aline Miller, Professor of Biomolecular Engineering and Associate Dean for Business Engagement and Innovation, presented the Innovation Enabling Awards to the seven winning projects.

 

Award Winners

MWjun24-670292-Awardees

 

Innovation Enabling Awards: £8,000

MWjun24-670337-Rosanna

Personalised phage therapy for bacteria infections 

Dr Rosanna Wright (School of Biological Sciences)

“The Researcher to Innovator programme has been an incredibly rewarding experience; the workshops, support and mentorship have helped me to understand the potential impact of my research and develop skills to better communicate with stakeholders. I am thrilled to receive an Innovation Prize which will accelerate our pathway to translation. Thank you R2I!”

 

MWjun24-670345-Josiah

UrbanWatt

Josiah Edebiri (School of Engineering)

"The Researcher to Innovator program has been a great experience; I enjoyed connecting with the other aspiring entrepreneurs and found the workshops hugely beneficial in developing my skillset to progress my enterprise moving forward."

 

Innovation Enabling Awards: £5,000

MWjun24-670364-Kane

Scrap Metal Separation

Dr Kane Williams (School of Engineering)

"R2I enabled me to make contacts in areas of my research that I would not have had otherwise. These contacts will allow me to develop my research further and branch out into new areas." 

 

 

MWjun24-670309-Taimoor

Gait Analysis System

Muhammad Taimoor Adil (School of Engineering)

“Participating in the Researcher to Innovator programme has been a transformative experience. The award validates my research's potential and provides essential support to turn it into an impactful solution. I'm grateful for the opportunity and excited to advance my deep-tech startup journey.”

Innovation Enabling Awards: £2,000

MWjun24-670314-Soheb

 

Breaking the barrier: A science-art hub

Dr Soheb Mandhai (School of Natural Sciences)

 “The R2I journey has opened my mind to new horizons and has equipped me with the foundational skills that I need to build my enterprise.”

 

 

MWjun24-670404-Matthew

Select Xpress

Matthew Reaney (School of Engineering)

“Having completed the program I can say our idea is in a better place and I feel I have skilled-up in terms of my communication of scientific ideas and willingness to reach out to potential collaborators.”

 

 

MWjun24-670380-Hongning

 

Colorolicous

Hongning Ren (School of Natural Sciences)

"I gained more appreciation of how to use my research to actually make a difference - sometimes it's better stepping out from lab to talk to real people, then you can solve some real problems."

 

 

The prize winners will also receive expert support and signposting to regional and national accelerator programmes and all the participants on the programme will have access to further support, mentoring and guidance from internal professional support teams, including the opportunity to build relationships with business engagement, Innovation Factory and the Masood Entrepreneurship Centre.

 

 

The organisers wish to thank the  Fellowship for their sponsorship of the Innovation Enabling Awards.

logo_Engineers in Business

Get Involved

If you are an early career researcher looking for an exciting opportunity to develop your innovative thinking and enhance your understanding of creating and developing impact join the next round of the R2I programme. Find out more .

 

The MEC Researcher to Innovator (R2I) programme is supported by the University’s Innovation Academy. The Innovation Academy is a pan University initiative and joint venture between the , the and the Business Engagement and Knowledge Exchange team, bringing together knowledge, expertise and routes to facilitate the commercialisation of research.

 

thumbnail_MEC Logos x3 2000x520_New

]]>
The R2I programme not only encourages and supports researchers to consider the commercial potential of their research but also develops entrepreneurial mind-sets, commercial awareness, confidence, resilience and networking skills. The success of the researchers is testament to their dedication, hard work and commitment throughout the programme. Congratulations to everyone that participated in this cohort and I look forward to supporting you to develop your ideas further.]]> The R2I options roundabout ‘pitch’ day is always a highlight, and this cohort didn’t disappoint! The researchers were truly inspiring not only in showcasing their passion for their projects but also in seeing their progress in customer discovery and shaping their research into a commercial proposition over the 8 week R2I programme. I wish them all luck and look forward to seeing them, and their ventures, thrive moving forward.]]> Fri, 14 Jun 2024 10:01:00 +0100 https://content.presspage.com/uploads/1369/63d90ab5-cc45-4434-a9e9-19feeaf07782/500_1920-researchertoinnovatorrgbcopy.jpg?10000 https://content.presspage.com/uploads/1369/63d90ab5-cc45-4434-a9e9-19feeaf07782/1920-researchertoinnovatorrgbcopy.jpg?10000
University of 鶹 scientists win prestigious Royal Society of Chemistry Prizes /about/news/university-of-manchester-scientists-win-prestigious-royal-society-of-chemistry-prizes/ /about/news/university-of-manchester-scientists-win-prestigious-royal-society-of-chemistry-prizes/636251Three scientists and one team from 鶹 have won prizes from the Royal Society of Chemistry in recognition of their brilliance in research and innovation.

]]>
Three scientists and one team from 鶹 have won prizes from the Royal Society of Chemistry in recognition of their brilliance in research and innovation.

Dr Selena Lockyer, Professor Matthew Gibson, Professor Sarah Lovelock and the Functional Framework Materials: Design and Characterisation Team, led by and Professor Sihai Yang have all been recognised with a prize this year.

V&I_P&A_Prizes celebration 2024_Winners Social_1200x628px_INDIVIDUAL_LockyerDr Selena Lockyer has been named winner of the Royal Society of Chemistry’s Dalton Emerging Researcher Prize for her synthetic and spectroscopic studies of molecular magnets, particularly supramolecular assemblies that could be used in quantum information processing. Dr Lockyer will also receive £3000 and a medal.

Dr Lockyer investigates the properties of individual electrons at the molecular level and how they can interact with one another and relay or store information. This is done at the National Service for Electron Paramagnetic Resonance Spectroscopy at 鶹.

Apart from making devices smaller, quantum devices possess other advantages. One such phenomenon is known as a superposition state that can be used in quantum bits (qubits), which a standard classical bit – the ones in our laptops – is unable to achieve.

A quantum computer will help us address society's challenges by modelling and developing solutions for climate change, sustainability and energy sources, medical conditions, and how to make a more efficient and better quantum computer.

After receiving the prize, Dr Lockyer said: ’s such an honour and privilege to receive this award. Unexpected, as there are so many up-and-coming scientists working on numerous research areas, which makes this all the more special. When you look back at the list of previous winners, it is overwhelming to now be part of this.”

V&I_P&A_Prizes celebration 2024_Winners Social_1200x628px_INDIVIDUAL_Gibson has been named winner of the Royal Society of Chemistry’s Corday-Morgan Prize.

Professor Gibson won the prize for transformative contributions in polymer and biomaterials science, particularly for the development of materials to stabilise biologics. Professor Gibson will also receive £5000 and a medal.

Storing and transporting biological materials is crucial to modern life, from frozen food to the safe delivery of blood transfusions, stem cells, or even organs. Professor Gibson and his team have learned from some of nature’s toughest organisms, which can survive sub-zero temperatures, to develop new materials which can protect biopharmaceuticals against cold stress.

After receiving the prize, Professor Gibson said: “I’m honoured to be recognised for the work we have done in my team to develop new tools to help us stabilize biologics against cold stress and to join a such a distinguished list of former awardees.”

V&I_P&A_Prizes celebration 2024_Winners Social_1200x628px_INDIVIDUAL_Lovelock has been named winner of the Royal Society of Chemistry’s Harrison-Meldola Prize.

Dr Lovelock won the prize for the development of innovative biocatalytic approaches to produce therapeutic oligonucleotides. She also receives £5000 and a medal.

Therapeutic oligonucleotides are a new class of RNA-based molecules that have the potential to treat a wide range of diseases. However, the rapidly growing number of therapies approved and in advanced clinical trials is placing unprecedented demands on our capacity to manufacture oligonucleotides at scale.

Biocatalysis is an exciting technology that is widely used across the chemical industry: this is where enzymes are used to convert starting materials into high-value products. Dr Lovelock’s group is developing biocatalytic approaches to produce therapeutic oligonucleotides in a more sustainable and scalable way.

One strategy they have developed produces complex oligonucleotide sequences in a single operation using polymerases and endonucleases (nature’s enzymes). These enzymes work together to amplify complementary sequences embedded within a catalytic template. The group is working in partnership with industry to translate their approaches into manufacturing processes.

After receiving the prize, Dr Lovelock said: “I am delighted to have been awarded the 2024 Harrison-Meldola Memorial Prize. I am very grateful to my talented research group. It is their hard work, great ideas, and dedication that has made this award possible.”

V&I_P&A_Prizes celebration 2024_Winners Social_1200x628px_HORIZON_MOFs for a sustainable futureThe Functional Framework Materials: Design and Characterisation Team have been named winners of the Royal Society of Chemistry’s Horizon Prize, which celebrates discoveries and innovations that push the boundaries of science.

The team is a collaboration between 鶹, Oak Ridge National Laboratory, Diamond Light Source, ISIS Neutron and Muon Source STFC, Berkeley Advanced Light Source, Peking University, Xiamen University and the University of Chicago.

They were awarded the prize for seminal contributions to in situ and operando characterisation of porous materials and catalysts for the binding, capture and separation of fuels, hydrocarbons, and pollutants. The team receive a trophy and a video showcasing their work, and each team member receives a certificate.

Metal-organic frameworks (MOFs) are porous materials that can capture and store important fuels like hydrogen, methane, and ammonia, hydrocarbons (ethane, propane, and xylenes), and harmful pollutants (carbon dioxide, sulfur dioxide, and nitrogen dioxide).

Using state-of-the-art X-ray and neutron techniques, the team have been able to see the MOFs at the atomic level and how the captured molecules interact with the MOF’s internal structure during reactions. They also used computational modelling to give a deep understanding of how these advanced functional materials operate at a molecular level. This extensive collaboration has been crucial for producing improved materials that can be integrated into our daily lives and makes a vital contribution towards solving the pressing climate and energy challenges that the world faces.

Professor Martin Schröder, Vice President and Dean, Faculty of Science and Engineering, who leads the group at 鶹, said: “I am delighted and honoured that the Royal Society of Chemistry has recognised our interdisciplinary team with the Dalton Horizon Prize. This has been a truly international collaborative effort spanning multiple individuals and groups each bringing their own unique expertise to address challenge research areas.”

The Royal Society of Chemistry’s prizes have recognised excellence in the chemical sciences for more than 150 years. This year’s winners join a prestigious list of past winners in the RSC’s prize portfolio, 60 of whom have gone on to win Nobel Prizes for their work, including 2022 Nobel laureate Carolyn Bertozzi and 2019 Nobel laureate John B Goodenough.

The Research and Innovation Prizes celebrate brilliant individuals across industry and academia. They include prizes for those at different career stages in general chemistry and for those working in specific fields, as well as interdisciplinary prizes and prizes for those in specific roles. The Horizon Prizes highlight exciting, contemporary chemical science at the cutting edge of research and innovation. These prizes are for groups, teams and collaborations of any form or size who are opening up new directions and possibilities in their field, through groundbreaking scientific developments. Other prize categories include those for Education (announced in November), the Inclusion & Diversity Prize, and Volunteer Recognition Prizes.

Dr Helen Pain, Chief Executive of the Royal Society of Chemistry, said: “The chemical sciences cover a rich and diverse collection of disciplines, from fundamental understanding of materials and the living world to applications in medicine, sustainability, technology and more. By working together across borders and disciplines, chemists are finding solutions to some of the world’s most pressing challenges.

“Our prize winners come from a vast array of backgrounds, all contributing in different ways to our knowledge-base and bringing fresh ideas and innovations. We recognise chemical scientists from every career stage and every role type, including those who contribute to the RSC’s work as volunteers. We celebrate winners from both industry and academia, as well as individuals, teams, and the science itself.

“Their passion, dedication and brilliance are an inspiration. I extend my warmest congratulations to them all.”

For more information about the RSC’s prizes portfolio, visit .

]]>
Wed, 12 Jun 2024 11:00:00 +0100 https://content.presspage.com/uploads/1369/9ba1e246-6544-44f2-ac6b-7c07d33cc413/500_untitleddesign2.png?10000 https://content.presspage.com/uploads/1369/9ba1e246-6544-44f2-ac6b-7c07d33cc413/untitleddesign2.png?10000
Thousands of young people share scientific questions once again this year in the Great Science Share for Schools /about/news/thousands-of-young-people-share-scientific-questions-once-again-this-year-in-the-great-science-share-for-schools/ /about/news/thousands-of-young-people-share-scientific-questions-once-again-this-year-in-the-great-science-share-for-schools/635978School pupils across the globe will be sharing their scientific curiosity this week as this year’s celebrates its annual Share Day.

]]>
School pupils across the globe will be sharing their scientific curiosity this week as this year’s celebrates its annual Share Day.

Throughout the year, teachers of 5-14 years olds have the chance to upskill in their own knowledge and skills of teaching science enquiry, using innovative resources and ideas related to the theme of Sustainable Science to involve their pupils in asking and investigating scientific questions that matter to them.

Now, on Tuesday 11 June, teachers and their pupils will come together in celebratory events both in-person and online, across the UK and beyond, to share what they have learnt with their peers, family, industry professionals and the general public.  

This year’s theme is Sustainable Science, with a focus on the Some of the questions shared this year, include:

·       How could we prevent the polar ice caps melting? 

·       Which fruit or vegetable is most likely to be able to power an electric car? 

·       What effects does plastic pollution have on wildlife? 

·       Which fabrics shed less fibres and are therefore better for the environment? 

·       Can we increase the biodiversity in our school? 

The Great Science Share for Schools (GSSfS) campaign was launched by Professor Lynne Bianchi, Vice Dean for Social Responsibility at 鶹, to provide a unique way to elevate the prominence of science in the classroom, focussing on learner-focussed science communication, inclusive and non-competitive engagement, and promoting collaboration.

Supported by a team of specialists, they have an approach that is supported across the STEM sector, and actively involves research from a range of fields including quantum science, fashion materials, computing and the creative industries.

Earlier this year, the campaign was granted the prestigious patronage of the , in recognition of its status as a beacon of excellence in science education and its pivotal role in shaping the next generation of scientists, innovators, and global citizens.

The team’s growth strategy, which monitors the reach and quality of the campaign, sees it develop year on year. Now, in its ninth year, there will be more than 650,000 pupils registered across 40 countries, with schools in Montenegro being some of the latest to join.

Professor Lynne Bianchi added: “GSSfS is a powerful and purposeful way to engage young people with science related to real-world contexts. It offers teachers and school leaders the chance to raise the profile of science at a time where our economy relies so heavily on STEM skills and innovation.”

Professor Bianchi, recently advised on the new Education Endowment Foundation’s Improving Primary Science Guidance and is researching the purpose and effectiveness of practical work in science as part of a Nuffield Foundation research study. In this way, the knowledge and awareness developed within the Great Science Share for Schools informs leading practice by sharing best practice and insights to make a wider impact.

An exciting addition to the Great Science Share this year is the release of the brand-new which publishes 200 questions shared by pupils.

Professor Bianchi said: “This has been an ideal opportunity to celebrate 鶹’s Bicentenary, and to inspire more teachers and young people across the world to ask, investigate and share their questions with each other.”

]]>
Mon, 10 Jun 2024 13:36:02 +0100 https://content.presspage.com/uploads/1369/74e3c3c7-d7b7-4851-b19a-89f4fc4d18c9/500_gssfspic2.jpg?10000 https://content.presspage.com/uploads/1369/74e3c3c7-d7b7-4851-b19a-89f4fc4d18c9/gssfspic2.jpg?10000
Researchers engineer new approach for controlling thermal emission /about/news/researchers-engineer-new-approach-for-controlling-thermal-emission/ /about/news/researchers-engineer-new-approach-for-controlling-thermal-emission/635694鶹’s National Graphene Institute has spearheaded an international team to engineer a novel approach for controlling thermal emission, detailed in a paper published in

]]>
鶹’s has spearheaded an international team to engineer a novel approach for controlling thermal emission, detailed in a paper published in . This breakthrough offers new design strategies beyond conventional materials, with promising implications for thermal management and camouflage technologies.

The international team, which also included Penn State College of Engineering, Koc University in Turkey and Vienna University of Technology in Austria, has developed a unique interface that localises thermal emissions from two surfaces with different geometric properties, creating a “perfect” thermal emitter. This platform can emit thermal light from specific, contained emission areas with unit emissivity.

, professor of 2D device materials at 鶹, explains, “We have demonstrated a new class of thermal devices using concepts from topology — a branch of mathematics studying properties of geometric objects — and from non-Hermitian photonics, which is a flourishing area of research studying light and its interaction with matter in the presence of losses, optical gain and certain symmetries.”

The team said the work could advance thermal photonic applications to better generate, control and detect thermal emission. One application of this work could be in satellites, said co-author Prof Sahin Ozdemir, professor of engineering science and mechanics at Penn State. Faced with significant exposure to heat and light, satellites equipped with the interface could emit the absorbed radiation with unit emissivity along a specifically designated area designed by researchers to be incredibly narrow and in whatever shape is deemed necessary.   

Getting to this point, though, was not straight forward, according to Ozdemir. He explained part of the issue is to create a perfect thermal absorber-emitter only at the interface while the rest of the structures forming the interface remains ‘cold’, meaning no absorption and no emission.

“Building a perfect absorber-emitter—a black body that flawlessly absorbs all incoming radiation—proved to be a formidable task,” Ozdemir said. However, the team discovered that one can be built at a desired frequency by trapping the light inside an optical cavity, formed by a partially reflecting first mirror and a completely reflecting second mirror: the incoming light partially reflected from the first mirror and the light which gets reflected only after being trapped between the two mirrors exactly cancel each other. With the reflection thus being completely suppressed, the light beam is trapped in the system, gets perfectly absorbed, and emitted in the form of thermal radiation.

To achieve such an interface, the researchers developed a cavity stacked with a thick gold layer that perfectly reflects incoming light and a thin platinum layer that can partially reflect incoming light. The platinum layer also acts as a broadband thermal absorber-emitter. Between the two mirrors is a transparent dielectric called parylene-C.

The researchers can adjust the thickness of the platinum layer as needed to induce the critical coupling condition where the incoming light is trapped in the system and perfectly absorbed, or to move the system away from the critical coupling to sub- or super-critical coupling where perfect absorption and emission cannot take place.

“Only by stitching two platinum layers with thicknesses smaller and larger than the critical thickness over the same dielectric layer, we create a topological interface of two cavities where perfect absorption and emission are confined. Crucial here is that the cavities forming the interface are not at critical coupling condition,” said first author M. Said Ergoktas, a research associate at 鶹 

The development challenges conventional understanding of thermal emission in the field, according to co-author Stefan Rotter, professor of theoretical physics at the Vienna University of Technology, “Traditionally, it has been believed that thermal radiation cannot have topological properties because of its incoherent nature.”

According to Kocabas, their approach to building topological systems for controlling radiation is easily accessible to scientists and engineers.  

“This can be as simple as creating a film divided into two regions with different thicknesses such that one side satisfies sub-critical coupling, and the other is in the super-critical coupling regime, dividing the system into two different topological classes,” Kocabas said.

The realised interface exhibits perfect thermal emissivity, which is protected by the reflection topology and “exhibits robustness against local perturbations and defects,” according to co-author Ali Kecebas, a postdoctoral scholar at Penn State. The team confirmed the system’s topological features and its connection to the well-known non-Hermitian physics and its spectral degeneracies known as exceptional points through experimental and numerical simulations.

“This is just a glimpse of what one can do in thermal domain using topology of non-Hermiticity. One thing that needs further exploration is the observation of the two counterpropagating modes at the interface that our theory and numerical simulations predict,” Kocabas said.

 

The National Graphene Institute (NGI) is a world-leading graphene and 2D material centre, focussed on fundamental research. Based at 鶹, where graphene was first isolated in 2004 by Professors Sir Andre Geim and Sir Kostya Novoselov, it is home to leaders in their field – a community of research specialists delivering transformative discovery. This expertise is matched by £13m leading-edge facilities, such as the largest class 5 and 6 cleanrooms in global academia, which gives the NGI the capabilities to advance underpinning industrial applications in key areas including: composites, functional membranes, energy, membranes for green hydrogen, ultra-high vacuum 2D materials, nanomedicine, 2D based printed electronics, and characterisation.

]]>
Fri, 07 Jun 2024 09:32:38 +0100 https://content.presspage.com/uploads/1369/4238e6dc-4f78-4bb6-8795-0703b3c919d2/500_picture3-3.jpg?10000 https://content.presspage.com/uploads/1369/4238e6dc-4f78-4bb6-8795-0703b3c919d2/picture3-3.jpg?10000
Scientists detect slowest-spinning radio emitting neutron star ever recorded /about/news/scientists-detect-slowest-spinning-radio-emitting-neutron-star-ever-recorded/ /about/news/scientists-detect-slowest-spinning-radio-emitting-neutron-star-ever-recorded/635289Scientists have detected what they believe to be a neutron star spinning at an unprecedentedly slow rate —slower than any of the more than 3,000 radio emitting neutron stars measured to date.

]]>
Scientists have detected what they believe to be a neutron star spinning at an unprecedentedly slow rate —slower than any of the more than 3,000 radio emitting neutron stars measured to date.

Neutron stars - the ultra-dense remains of a dead star - typically rotate at mind-bendingly fast speeds, taking just seconds or even a fraction of a second to fully spin on their axis.

However, the neutron star, newly discovered by an international team of astronomers, defies this rule, emitting radio signals on a comparatively leisurely interval of 54 minutes.

The team was led by Dr Manisha Caleb at the University of Sydney and Dr Emil Lenc at CSIRO, Australia’s national science agency and includes scientists at 鶹 and the University of Oxford.

The results, published today in the journal , offer new insights into the complex life cycles of stellar objects.

At the end of their life, large stars use up all their fuel and explode in a spectacular blast called a supernova. What remains is a stellar remnant called a neutron star, made up of trillions of neutrons packed into a ball so dense that its mass is 1.4 times that of the Sun is packed into a radius of just 10km.

The unexpected radio signal from the stellar object detected by the scientists travelled approximately 16,000 light years to Earth.  The nature of the radio emission and the rate at which the spin period is changing suggest it is a neutron star. However, the researchers have not ruled out the possibility of it being an isolated white dwarf with an extraordinarily strong magnetic field. Yet, the absence of other nearby highly magnetic white dwarfs makes the neutron star explanation more plausible.

Further research is required to confirm what the object is, but either scenario promises to provide valuable insights into the physics of these extreme objects. 

The findings could make scientists reconsider their decades-old understanding of neutron stars or white dwarfs; how they emit radio waves and what their populations are like in our Milky Way galaxy.

The discovery was made using CSIRO’s ASKAP radio telescope on Wajarri Yamaji Country in Western Australia, which can see a large part of the sky at once and means it can capture things researchers aren’t even looking for.

The research team were simultaneously monitoring a source of gamma rays and seeking a fast radio burst when they spotted the object slowly flashing in the data.

Lead author Dr Manisha Caleb from the University of Sydney Institute for Astronomy, said: “What is intriguing is how this object displays three distinct emission states, each with properties entirely dissimilar from the others. The MeerKAT radio telescope in South Africa played a crucial role in distinguishing between these states. If the signals didn’t arise from the same point in the sky, we would not have believed it to be the same object producing these different signals.”

The origin of such a long period signal remains a profound mystery, with white dwarfs and neutron stars the prime suspects. But as further investigations continue, this discovery is set to deepen our understanding of the universe’s most enigmatic objects.

]]>
Wed, 05 Jun 2024 10:00:00 +0100 https://content.presspage.com/uploads/1369/cddbe0f0-0664-4bac-9936-7a49d24b6cda/500_longperiodpulsar16.9web.png?10000 https://content.presspage.com/uploads/1369/cddbe0f0-0664-4bac-9936-7a49d24b6cda/longperiodpulsar16.9web.png?10000
Scientists reveal first data from Euclid telescope offering snapshot of cosmic history /about/news/scientists-reveal-first-data-from-euclid-telescope-offering-snapshot-of-cosmic-history/ /about/news/scientists-reveal-first-data-from-euclid-telescope-offering-snapshot-of-cosmic-history/632512Scientists have released the first set of scientific data captured with the Euclid telescope, showing an exciting glimpse of the Universe’s distant past.

]]>
Scientists have released the first set of scientific data captured with the Euclid telescope, showing an exciting glimpse of the Universe’s distant past.

The telescope, launched in July 2023, is part of the Dark Energy Satellite Mission, which aims to map the dark Universe.

Led by the European Space Agency in collaboration with The Euclid Consortium - which includes astronomers at 鶹 in leadership positions – the mission seeks to unlock mysteries of dark matter and dark energy and reveal how and why the Universe looks as it does today.

Early observations, described in a series of published today, include five never-before-seen images of the Universe.

The papers also describe several new discoveries including, free-floating new-born planets, newly identified extragalactic star clusters, new low-mass dwarf galaxies in a nearby galaxy cluster, the distribution of dark matter and intracluster light in galaxy clusters, and very distant bright galaxies from the first billion years of the Universe.

The findings give an insight into the unprecedented power of the Euclid telescope, which is designed to provide the most precise map of our Universe over time and demonstrates Euclid’s ability to unravel the secrets of the cosmos.

Chrisopher Conselice, Professor of Extragalactic Astronomy at 鶹, said: “Euclid will completely revolutionise our view of the Universe. Already these results are revealing important new findings about local galaxies, new unknown dwarf galaxies, extrasolar planets and some of the first galaxies. These results are only the tip of the iceberg in terms of what will come. Soon Euclid will discover yet unknown details of the dark energy and give a full picture of how galaxy formation occurred across all cosmic time.”

Michael Brown, Professor of Astrophysics at 鶹, added: “The exceptional data that Euclid is delivering over a large fraction of the sky promises to revolutionise our understanding of dark energy. It is extremely exciting to be part of the team working to extract these headline science results.”

The Early Release Observations programme was conducted during Euclid’s first months in space as a first look at the depth and diversity of science Euclid will provide. A total of 24 hours were allocated to target 17 specific astronomical objects, from nearby clouds of gas and dust to distant clusters of galaxies, producing stunning images that are invaluable for scientific research. In just a single day, Euclid produced a catalogue of more than 11 million objects in visible light and five million more in infrared light.

The images published today follow the return of produced in November 2023.

In addition to contributions to the mission’s primary objectives, scientists at 鶹, in collaboration with the University of Massachusetts Amherst, conducted a preliminary search of the data for distant galaxies. The red galaxies in the image show the cluster, which acts as a magnifying glass to reveal more distant sources behind. In total, 29 galaxies were discovered providing insight into the first billion years of the Universe.

Dr Rebecca Bowler, Ernest Rutherford Fellow at 鶹, said: “In these spectacular images we can see galaxies that were previously invisible, because the most distant galaxies can only be discovered using the longer near-infrared wavelengths seen by Euclid. 

“This first look data has been invaluable to test our search algorithms and identifying challenges, such as confusion of distant galaxies with brown dwarfs in our own Milky Way, before we start working on the main data later this year.   

“What is amazing is that these images cover an area of less than 1% of the full deep observations, showing that we expect to detect thousands of early galaxies in the next few years with Euclid, which will be revolutionary in understanding how and when galaxies formed after the Big Bang.”

The images obtained by Euclid are at least four times sharper than those that can be taken from ground-based telescopes. They cover large patches of sky at unrivalled depth, looking far into the distant Universe using both visible and infrared light.

The next data release from the Euclid Consortium will focus on Euclid’s primary science objectives. A first worldwide quick release is currently planned for March 2025, while a wider data release is scheduled for June 2026. At least three other quick releases and two other data releases are expected before 2031, which corresponds to a few months after the end of Euclid’s initial survey.

The Euclid Consortium comprises more than 2600 members, including over 1000 researchers from more than 300 laboratories in 15 European countries, plus Canada, Japan and United States, covering various fields in astrophysics, cosmology, theoretical physics, and particle physics.

Josef Aschbacher, ESA Director General, said: “Euclid demonstrates European excellence in frontier science and state-of-the-art technology, and showcases the importance of international collaboration.

“The mission is the result of many years of hard work from scientists, engineers and industry throughout Europe and from members of the Euclid scientific consortium around the world, all brought together by ESA. They can be proud of this achievement – the results are no small feat for such an ambitious mission and such complex fundamental science. Euclid is at the very beginning of its exciting journey to map the structure of the Universe.”

]]>
Thu, 23 May 2024 11:00:00 +0100 https://content.presspage.com/uploads/1369/7b6c2208-40c5-409d-9d8e-d75e97e9a722/500_euclid-looking-into-the-universe.jpg?10000 https://content.presspage.com/uploads/1369/7b6c2208-40c5-409d-9d8e-d75e97e9a722/euclid-looking-into-the-universe.jpg?10000
Unlocking the future of biotechnology: ICED revolutionises enzyme design /about/news/revolutionising-enzyme-design/ /about/news/revolutionising-enzyme-design/632010Researchers from the 鶹 Institute of Biotechnology (MIB) and the Institute for Protein Design (IPD) have launched a groundbreaking initiative poised to transform the landscape of engineering biology for industrial applications. The International Centre for Enzyme Design (ICED) brings together internationally leading research teams to establish a fully integrated computational and experimental platform to develop a new generation of industrial biocatalysts.

]]>
Researchers from the 鶹 Institute of Biotechnology (MIB) and the Institute for Protein Design (IPD) have launched a groundbreaking initiative poised to transform the landscape of engineering biology for industrial applications. The International Centre for Enzyme Design (ICED) brings together internationally leading research teams to establish a fully integrated computational and experimental platform to develop a new generation of industrial biocatalysts.

The centre has been awarded £1.2m through an International Centre to Centre grant from the Engineering and Physical Sciences Research Council, part of UK Research and Innovation. Led by Professor , Interim Director of the MIB, along with Professor and Dr , and in partnership with Professor David Baker from the Institute of Protein Design (IPD) at the University of Washington, ICED will employ the latest deep-learning protein design tools to accelerate the development of new biocatalysts for use across the chemical industry. The centre will deliver customised biocatalysts for sustainable production of a wide range of chemicals and biologics, including pharmaceuticals, agrochemicals, materials, commodity chemicals and advanced synthetic fuels.

Biocatalysis uses natural or engineered enzymes to speed up valuable chemical processes. This technology is now widely recognised as a key enabling technology for developing a greener and more efficient chemical industry. Although powerful, existing experimental methods for developing industrial biocatalysts are costly and time-consuming, and this restricts the potential impact of biocatalysis on many industrial processes. Furthermore, for many desirable chemical transformations there are no known enzymes that can serve as starting templates for experimental engineering. In ICED we will bring together leading computational and experimental teams from across academia and industry to bring about a step-change in the speed of biocatalyst development. The approaches developed will also allow the development of new families of enzymes with catalytic functions that are unknown in nature.

Professor David Baker, lead researcher from the Institute of Protein Design says; “Accurately designing efficient enzymes with new catalytic functions is one of the grand challenges for the protein design field. We are thrilled to be working with Professor Green and his team in the MIB to address this crucial biotechnological challenge.’’

The design tools developed throughout the project will be readily available to specialists and non-specialists to support their own enzyme engineering and biocatalysis needs. As the centre develops, we expect to grow our partnerships with the wider academic and industrial sector to ensure that we can best serve the needs and ambitions of the global biocatalysis community.

With the chemical and pharmaceutical industries contributing £30.7bn to the UK economy alone, technologies like biocatalysis are poised to revolutionise how every day, essential products are made while also benefitting our health and our environment.

]]>
Tue, 21 May 2024 08:37:08 +0100 https://content.presspage.com/uploads/1369/45296954-8f0e-4f07-843b-bc0455b100fc/500_mibexterior1.jpg?10000 https://content.presspage.com/uploads/1369/45296954-8f0e-4f07-843b-bc0455b100fc/mibexterior1.jpg?10000
Scientists make quantum breakthrough in 2D materials /about/news/scientists-make-quantum-breakthrough-in-2d-materials/ /about/news/scientists-make-quantum-breakthrough-in-2d-materials/632112Scientists have discovered that a ‘single atomic defect' in a layered 2D material can hold onto quantum information for microseconds at room temperature, underscoring the potential of 2D materials in advancing quantum technologies.

]]>
Scientists have discovered that a ‘single atomic defect' in a layered 2D material can hold onto quantum information for microseconds at room temperature, underscoring the potential of 2D materials in advancing quantum technologies.

The defect, found by researchers from the Universities of 鶹 and Cambridge using a thin material called Hexagonal Boron Nitride (hBN), demonstrates spin coherence—a property where an electronic spin can retain quantum information— under ambient conditions. They also found that these spins can be controlled with light.

Up until now, only a few solid-state materials have been able to do this, marking a significant step forward in quantum technologies.

The findings published in , further confirm that the accessible spin coherence at room temperature is longer than the researchers initially imagined it could be.

Carmem M. Gilardoni, co-author of the paper and postdoctoral fellow at the Cavendish Laboratory at the University of Cambridge, where the research was carried out, said: “The results show that once we write a certain quantum state onto the spin of these electrons, this information is stored for ~1 millionth of a second, making this system a very promising platform for quantum applications.

“This may seem short, but the interesting thing is that this system does not require special conditions – it can store the spin quantum state even at room temperature and with no requirement for large magnets.”

Hexagonal Boron Nitride (hBN) is an ultra-thin material made up of stacked one-atom-thick layers, kind of like sheets of paper. These layers are held together by forces between molecules, but sometimes, there are tiny flaws between these layers called ‘atomic defects’, similar to a crystal with molecules trapped inside it. These defects can absorb and emit light that we can see, and they can also act as local traps for electrons. Because of the defects in hBN, scientists can now study how these trapped electrons behave, particularly the spin property, which allows electrons to interact with magnetic fields. They can also control and manipulate the electron spins using light within these defects at room temperature – something that has never been done before.

Dr Hannah Stern, first author of the paper and Royal Society University Research Fellow and Lecturer at 鶹, said: “Working with this system has highlighted to us the power of the fundamental investigation of new materials. As for the hBN system, as a field we can harness excited state dynamics in other new material platforms for use in future quantum technologies.

“Each new promising system will broaden the toolkit of available materials, and every new step in this direction will advance the scalable implementation of quantum technologies.”

Prof Richard Curry added: “Research into materials for quantum technologies is critical to support the UK’s ambitions in this area. This work represents another leading breakthrough from a University of 鶹 researcher in the area of materials for quantum technologies, further strengthening the international impact of our work in this field.”

Although there is a lot to investigate before it is mature enough for technological applications, the finding paves the way for future technological applications, particularly in sensing technology.

The scientists are still figuring out how to make these defects even better and more reliable and are currently probing how far they can extend the spin storage time. They are also investigating whether they can optimise the system and material parameters that are important for quantum-technological applications, such as defect stability over time and the quality of the light emitted by this defect.

]]>
Mon, 20 May 2024 10:00:00 +0100 https://content.presspage.com/uploads/1369/48eb6081-4db1-406f-a5a0-ee812f0753c8/500_quantumstock.jpg?10000 https://content.presspage.com/uploads/1369/48eb6081-4db1-406f-a5a0-ee812f0753c8/quantumstock.jpg?10000
Outstanding 鶹 scientist elected as Fellow of the Royal Society /about/news/outstanding-manchester-scientist-elected-as-fellow-of-the-royal-society/ /about/news/outstanding-manchester-scientist-elected-as-fellow-of-the-royal-society/632102, Director of Jodrell Bank Centre for Astrophysics has been elected as a Fellow of the Royal Society in recognition of his “invaluable contributions to science”.

]]>

, Director of Jodrell Bank Centre for Astrophysics, has been elected as a Fellow of the Royal Society in recognition of his “invaluable contributions to science”.

Professor Garrett is one of more than 90 exceptional researchers across the world to be selected by the Royal Society - the UK’s national academy of sciences.

Michael is the inaugural Sir Bernard Lovell chair of Astrophysics at 鶹 and has broad scientific interest, including the study of the distant universe via high resolution radio observations. He is also active in the and is currently chair of the International Academy of Astronautics SETI Permanent Committee.

Prof Garret is a leader in the field of astrophysics and was responsible for the final design, construction, and operational phases of the International , and while Director of the Joint Institute for VLBI in Europe (2003-2007), he developed the technique of wide-field and spearheaded the roll-out of real-time VLBI (e-VLBI) across the European VLBI Network and beyond.

Garrett was also instrumental in finalising the original design concept for the .

Drawn from across academia, industry and wider society, the new intake spans disciplines as varied as studying the origins and evolution of our universe, pioneering treatments for Huntington’s Disease, developing the first algorithm for video streaming and generating new insights into memory formation.

Prof Garrett joins other leaders in their fields, including the Nobel laureate, Professor Emmanuelle Charpentier; an Emmy winner, Dr Andrew Fitzgibbons (for his contributions to the 3D camera tracker software “boujou”); and the former Chief Scientific Advisor to the US President, Professor Anthony Fauci.

Sir Adrian Smith, President of the Royal Society, said: “I am pleased to welcome such an outstanding group into the Fellowship of the Royal Society.

“This new cohort have already made significant contributions to our understanding of the world around us and continue to push the boundaries of possibility in academic research and industry.

“From visualising the sharp rise in global temperatures since the industrial revolution to leading the response to the Covid-19 pandemic, their diverse range of expertise is furthering human understanding and helping to address some of our greatest challenges.

is an honour to have them join the Fellowship.”

Statistics about this year’s intake of Fellows:

  • 30% of this year’s intake of Fellows, Foreign Members and Honorary Fellows are women.
  • New Fellows have been elected from 23 UK institutions, including The University of Nottingham, British Antarctic Survey, University of Strathclyde and the Natural History Museum
  • They have been elected from countries including Brazil, China, Japan, Mexico and Singapore

The full list of the newly elected Fellows and Foreign Members of the Royal Society can be found here:

]]>
Fri, 17 May 2024 11:54:40 +0100 https://content.presspage.com/uploads/1369/7aca1af3-f0e5-4dfc-9792-4dd6c8d9924d/500_profmikegarrett.jpg?10000 https://content.presspage.com/uploads/1369/7aca1af3-f0e5-4dfc-9792-4dd6c8d9924d/profmikegarrett.jpg?10000
鶹 set to put the north-west on the biotech map with coalition launch /about/news/the-university-of-manchester-set-to-put-the-north-west-on-the-biotech-map-with-coalition-launch/ /about/news/the-university-of-manchester-set-to-put-the-north-west-on-the-biotech-map-with-coalition-launch/631338The Industrial Biotechnology Innovation Catalyst brings together academics, industry and government to supercharge cutting-edge research and deliver economic benefits to the region.

]]>
The Industrial Biotechnology Innovation Catalyst (IBIC), launched by 鶹 today [9 May] establishes the north-west of England as a global leader in biotechnology innovation, boosting job creation, collaboration, investment and upskilling in the region.

The project leverages a £5 million investment from the ’s Place-Based Impact Acceleration Account to stimulate innovation and commercial growth. The IBIC will give businesses and start-ups a platform to engage with higher education institutions, governmental organisations and researchers in the north-west, and support translating fundamental biotechnology research from the lab to the real world.   

The IBIC launches at a significant time for the UK’s biotechnology market. The UK Government’s on biotechnology and signal increasing interest in the sector, which was valued at £21.8billion in 2023, according to IBISWorld.

Professor Aline Miller, Professor of Biomolecular Engineering and Associate Dean for Business Engagement and Innovation at 鶹, said: "Combine academic research with industrial application, and together we can yield transformative outcomes for both our economy and environment.

“With the launch of the IBIC, we are inviting businesses and startups to join us as we take on global challenges like climate change and sustainability. To do that, we need to create a vibrant ecosystem of interconnected disciplines to help scale businesses, bring research to life and ultimately deliver huge economic benefits to the north-west and beyond.”

This invitation extends particularly to SMEs, high-growth biotech companies, and other businesses interested in contributing to and benefiting from a thriving biotechnology industry in the north-west.

Companies interested in participating or learning more about the Industrial Biotechnology Innovation Catalyst can contact the IBIC team at ibic@manchester.ac.uk for more information and to discuss potential collaboration and partnership opportunities.

]]>
Thu, 09 May 2024 10:35:00 +0100 https://content.presspage.com/uploads/1369/500_aline-miller-cropped.jpg?10000 https://content.presspage.com/uploads/1369/aline-miller-cropped.jpg?10000
Quantum breakthrough: World’s purest silicon brings scientists one step closer to scaling up quantum computers /about/news/quantum-breakthrough-worlds-purest-silicon-brings-scientists-one-step-closer-to-scaling-up-quantum-computers/ /about/news/quantum-breakthrough-worlds-purest-silicon-brings-scientists-one-step-closer-to-scaling-up-quantum-computers/630616Scientists at 鶹 have produced an enhanced, ultra-pure form of silicon that allows construction of high-performance qubit devices – a fundamental component required to pave the way towards scalable quantum computers.

]]>
More than 100 years ago, scientists at 鶹 changed the world when they discovered the nucleus in atoms, marking the birth of nuclear physics.

Fast forward to today, and history repeats itself, this time in quantum computing.

Building on the same pioneering method forged by Ernest Rutherford – "the founder of nuclear physics" – scientists at the University, in collaboration with the University of Melbourne in Australia, have produced an enhanced, ultra-pure form of silicon that allows construction of high-performance qubit devices – a fundamental component required to pave the way towards scalable quantum computers.

The finding, published in the journal Communications Materials - Nature, could define and push forward the future of quantum computing.

Richard Curry, Professor of Advanced Electronic Materials at 鶹, said: “What we’ve been able to do is effectively create a critical ‘brick’ needed to construct a silicon-based quantum computer. It’s a crucial step to making a technology that has the potential to be transformative for humankind - feasible; a technology that could give us the capability to process data at such as scale, that we will be able to find solutions to complex issues such as addressing the impact of climate change and tackling healthcare challenges.  

is fitting that this achievement aligns with the 200th anniversary of our University, where 鶹 has been at the forefront of science innovation throughout this time, including Rutherford’s ‘splitting the atom’ discovery in 1917, then in 1948 with ‘The Baby’ - the first ever real-life demonstration of electronic stored-program computing, now with this step towards quantum computing.”

One of the biggest challenges in the development of quantum computers is that qubits – the building blocks of quantum computing - are highly sensitive and require a stable environment to maintain the information they hold. Even tiny changes in their environment, including temperature fluctuations can cause computer errors.

Another issue is their scale, both their physical size and processing power. Ten qubits have the same processing power as 1,024 bits in a normal computer and can potentially occupy much smaller volume. Scientists believe a fully performing quantum computer needs around one million qubits, which provides the capability unfeasible by any classical computer.

Silicon is the underpinning material in classical computing due to its semiconductor properties and the researchers believe it could be the answer to scalable quantum computers. Scientists have spent the last 60 years learning how to engineer silicon to make it perform to the best of its ability, but in quantum computing, it has its challenges.

Natural silicon is made up of three atoms of different mass (called isotopes) – silicon 28, 29 and 30. However the Si-29, making up around 5% of silicon, causes a ‘nuclear flip flopping’ effect causing the qubit to lose information.

In a breakthrough at 鶹, scientists have come up with a way to engineer silicon to remove the silicon 29 and 30 atoms, making it the perfect material to make quantum computers at scale, and with high accuracy.

The result – the world’s purest silicon – provides a pathway to the creation of one million qubits, which may be fabricated to the size of pin head.

Ravi Acharya, a PhD researcher who performed experimental work in the project, explained: "The great advantage of silicon quantum computing is that the same techniques that are used to manufacture the electronic chips currently within an everyday computer that consist of billions of transistors can be used to create qubits for silicon-based quantum devices. The ability to create high quality Silicon qubits has in part been limited to date by the purity of the silicon starting material used. The breakthrough purity we show here solves this problem."

The new capability offers a roadmap towards scalable quantum devices with unparalleled performance and capabilities and holds promise of transforming technologies in ways hard to imagine.

Project co-supervisor, Professor David Jamieson, from the University of Melbourne, said: “Our technique opens the path to reliable quantum computers that promise step changes across society, including in artificial intelligence, secure data and communications, vaccine and drug design, and energy use, logistics and manufacturing.

“Now that we can produce extremely pure silicon-28, our next step will be to demonstrate that we can sustain quantum coherence for many qubits simultaneously. A reliable quantum computer with just 30 qubits would exceed the power of today's supercomputers for some applications,”

What is quantum computing and how does it work?

All computers operate using electrons. As well as having a negative charge, electrons have another property known as ‘spin’, which is often compared to a spinning top.

The combined spin of the electrons inside a computer’s memory can create a magnetic field. The direction of this magnetic field can be used to create a code where one direction is called ‘0’ and the other direction is called ‘1’. This then allows us to use a number system that only uses 0 and 1 to give instructions to the computer. Each 0 or 1 is called a bit.

In a quantum computer, rather than the combined effect of the spin of many millions of electrons, we can use the spin of single electrons, moving from working in the ‘classical’ world to the ‘quantum’ world; from using ‘bits’ to ‘qubits’.

While classical computers do one calculation after another, quantum computers can do all the calculations at the same time allowing them to process vast amounts of information and perform very complex calculations at an unrivalled speed.

]]>
Tue, 07 May 2024 10:00:00 +0100 https://content.presspage.com/uploads/1369/b23da347-f30d-49e7-bb09-8d31f81ce454/500_quantum-siliconstory-9.jpg?10000 https://content.presspage.com/uploads/1369/b23da347-f30d-49e7-bb09-8d31f81ce454/quantum-siliconstory-9.jpg?10000
Beer brewed with novel yeast hybrid celebrates 200 years of University research and could lead to a more sustainable future /about/news/beer-brewed-with-novel-yeast-hybrid-celebrates-200-years-of-university/ /about/news/beer-brewed-with-novel-yeast-hybrid-celebrates-200-years-of-university/631521A novel hybrid yeast strain created by researchers at the 鶹 Institute of Biotechnology, has been used by a local brewer to produce a new beer in time for the University’s festival.

]]>
A novel hybrid yeast strain created by researchers at the 鶹 Institute of Biotechnology, has been used by a local brewer to produce a new beer in time for the University’s festival.

‘Tales From The Past’, created in partnership with 鶹’s leading independent brewery Cloudwater Brew Co, celebrates the University’s 200th anniversary and will be launched at its bicentenary festival, where it will be available to buy from the festival bar.

Supported by a Knowledge Transfer Partnership (KTP) grant, 鶹 team crossed Saccharomyces jurei, a new species of yeast discovered by Delneri in 2017, with a common ale yeast, Saccharomyces cerevisae, to produce a new starter hybrid strain that enhances the aroma and flavour of the beer.

This new hybrid has several advantages over similar brewing yeasts; it has the ability to thrive at lower temperatures, adds a different flavour profile, and is able to ferment maltose and maltotriose, two abundant sugars present in the wort. These capabilities provide a range of new opportunities for brewers, with the potential for a multitude of hybrids with different fermentation characteristics.

Paul Jones, CEO of Cloudwater Brew Co, said; is exciting to be able to brew a beer with a brand new species of yeast and to explore the range of flavours we can create. This beer represents the possibilities of joining academia with industry and we are lucky to have access to this fount of knowledge right on our doorstep.”

The University team has also been developing new hybridisation techniques. Typically, yeast hybrids grow by budding, where a new cell grows from an original ‘parent’, but they are sterile. Now, using a genetic method which doubles the content of the hybrid genome, researchers have overcome infertility allowing the creation of future hybrid generations with diverse traits. These offspring can then be screened for desirable biotechnological characteristics, allowing the team to select and combine beneficial traits from different yeast species using multigenerational breeding.

As yeasts play a major role in many industrial biotechnology applications, different hybrids bred in this way pave the way for creating bespoke microbial factories that can be used to create sustainable products.

As well as their familiar roles in brewing and baking, scientists use yeasts as model organisms to study how cells work. This role has placed them at the forefront of engineering biology, an emerging area of science that seeks to use nature’s own biological mechanisms to replace current, unsustainable industrial processes. As a result, the team’s novel yeast could lead to future breakthroughs in new, green pharmaceuticals and more sustainable fuels.

To launch the beer and share more about her pioneering work, Professor Delneri will give a talk at the Universally 鶹 festival on Friday 7 June at 5.45pm. Tickets can be

]]>
Tue, 07 May 2024 00:00:00 +0100 https://content.presspage.com/uploads/1369/500_stock-photo-barman-hands-pouring-a-lager-beer-in-a-glass-411117343.jpg?10000 https://content.presspage.com/uploads/1369/stock-photo-barman-hands-pouring-a-lager-beer-in-a-glass-411117343.jpg?10000
Group to investigate research governance of controversial ‘Solar Radiation Modification’ technology /about/news/solar-radiation-modification-technology/ /about/news/solar-radiation-modification-technology/630023Over the next three years, a group of European researchers including The University of 鶹's Dr Robert Bellamy will examine the governance principles and guidelines for responsible Solar Radiation Modification research. This contentious set of technologies may help tackle the climate crisis, but comes with additional risks.

]]>
Over the next three years, a group of European researchers including The University of 鶹's Dr Robert Bellamy will examine the governance principles and guidelines for responsible Solar Radiation Modification research. This contentious set of technologies may help tackle the climate crisis, but comes with additional risks.

SRM technologies aim to limit global warming by reducing the amount of solar radiation reaching the Earth’s surface - reflecting sunlight or increasing how much heat escapes back into space. One example of SRM is Stratospheric Aerosol Injection which involves releasing reflective particles into the upper atmosphere to increase the reflection of sunlight back into space.

Views on SRM research are diverse, and conversations can be contentious. Some are concerned that research and development of SRM would distract from vital efforts to reduce emissions. Others view SRM as a potential opportunity to limit heating, avoid dangerous ecological tipping points, and protect humanity from the worst impacts of the climate crisis. Many remain undecided, but see a need to study risks, uncertainties and potential benefits.

is a European Union-funded project which will examine principles and guidelines for a possible governance framework for responsible SRM research. The project will engage with diverse stakeholders and rightsholders, including marginalised and affected communities such as indigenous peoples in the Arctic and communities in the Global South. This collaborative approach will anchor project results in a diversity of voices, cultural contexts, and value-systems, reflecting the grappling of society with this complex and contentious issue.

Matthias Honegger, Senior Research Associate at Perspectives Climate Research, said: “No matter your preference on the long-term role – if any – of SRM in managing threats of climate change to human lives and nature, ignoring the topic will not resolve anything. Cautious and deliberate guidance and collaboration on SRM research and its governance are key.”

Julie Vinders, Senior Research Analyst at Trilateral Research, added: “The Co-CREATE project takes a neutral stance on Solar Radiation Management (SRM) and rather focuses on defining the conditions for responsible research. This research is crucial to facilitate informed discussions about SRM and prevent hasty or unilateral deployment of a technology that is not fully understood.”

Dr Peter Irvine, Lecturer at University College London, summarised the project: "Solar Radiation Modification covers a range of different interventions, each with their own potentials, limits, and risks. The Co-Create project will bring together a scientific and technical understanding of these details, with an interdisciplinary assessment of the issues, and stakeholder perspectives to develop robust principles and guidelines for SRM research governance."

]]>
Tue, 30 Apr 2024 09:00:00 +0100 https://content.presspage.com/uploads/1369/b17be4bf-11bc-430d-8174-5296de167255/500_cocreate.jpg?10000 https://content.presspage.com/uploads/1369/b17be4bf-11bc-430d-8174-5296de167255/cocreate.jpg?10000
Energy trades could help resolve Nile conflict /about/news/energy-trades-could-help-resolve-nile-conflict/ /about/news/energy-trades-could-help-resolve-nile-conflict/629966Scientists have shed light on a new, transformative approach that could help resolve a dispute over the Nile river’s water resources.

]]>
Scientists have shed light on a new, transformative approach that could help resolve a dispute over the Nile river’s water resources.

The Nile is one of the longest rivers globally and spreads over 11 countries in East Africa, supplying water, energy production, environmental quality and cultural wealth. However, the use of Nile resources has been a long-standing source of tension, often overshadowing opportunities for cooperation and mutual benefit.

But as the demand for energy, water, and food in Africa is steadily increasing, the study, led by 鶹 in collaboration with regional organisations, offers a glimmer of hope at a resolution.

The research, published today in the journal , moves away from traditional water-centric agreements, and presents a detailed simulation of the combined energy-water system to reveal how different scenarios of international energy trades could help alleviate the Nile water conflict.

First author Dr Mikiyas Etichia from 鶹, said: “Traditionally, water disputes in transboundary river basins like the Nile have been approached through a water-centric viewpoint. However, sharing benefits of water resources, such as hydro-generated electricity, crops and fisheries can result in a win-win situation.”

Co-author Dr Mohammed Basheer, Assistant Professor at the University of Toronto, added: “In the Nile Basin, energy-river basin benefit-sharing projects have been implemented in the past at a small scale, but detailed tools like the one presented in the paper can help create actionable large-scale proposals.”

At the heart of the dispute lies the Grand Ethiopian Renaissance Dam (GERD) - a large dam on the Blue Nile River in Ethiopia constructed to improve Ethiopia's electricity access and to export electricity to neighbouring countries. The project sparked tensions between Ethiopia, Sudan and Egypt over water rights and access.

The simulator, designed by the scientists using open-source technology, covers 13 East African countries, including those within the Nile Basin, to model potential energy trade agreements between Ethiopia, Sudan, and Egypt.

By increasing electricity trade, countries can simultaneously address water deficits, boost hydropower generation, reduce energy curtailment, and cut greenhouse gas emissions.

Corresponding author from 鶹, said: “The energy trades tested in this study provide the countries a range of solutions that are likely in their national interest.

“The study highlights the value of detailed multisector simulation to unpick the complex interdependencies of large multi-country resource systems. Implementation of the arrangements proposed here would need to be further assessed from governance and legal perspectives to become viable proposals. If successful, they could contribute to sustainable resource management and regional stability.

“We are hopeful the new analytical tools or their results will be taken up by the negotiating parties.”

]]>
Fri, 26 Apr 2024 16:00:00 +0100 https://content.presspage.com/uploads/1369/500_51267299702-9f327935ac-k.jpg?10000 https://content.presspage.com/uploads/1369/51267299702-9f327935ac-k.jpg?10000
鶹 Scientists Find Novel One-Dimensional Superconductor /about/news/manchester-scientists-find-novel-one-dimensional-superconductor/ /about/news/manchester-scientists-find-novel-one-dimensional-superconductor/629722Researchers at 鶹 have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system.

]]>
In a significant development in the field of superconductivity, researchers at have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system. This breakthrough offers a promising pathway to achieving superconductivity in the quantum Hall regime, a longstanding challenge in condensed matter physics.

Superconductivity, the ability of certain materials to conduct electricity with zero resistance, holds profound potential for advancements of quantum technologies. However, achieving superconductivity in the quantum Hall regime, characterised by quantised electrical conductance, has proven to be a mighty challenge.

The research, published this week (24 April 2024) in , details extensive work of the 鶹 team led by Professor Andre Geim, Dr Julien Barrier and Dr Na Xin to achieve superconductivity in the quantum Hall regime. Their initial efforts followed the conventional route where counterpropagating edge states were brought into close proximity of each other. However, this approach proved to be limited.

"Our initial experiments were primarily motivated by the strong persistent interest in proximity superconductivity induced along quantum Hall edge states," explains Dr Barrier, the paper's lead author. "This possibility has led to numerous theoretical predictions regarding the emergence of new particles known as non-abelian anyons."

The team then explored a new strategy inspired by their earlier work demonstrating that boundaries between domains in graphene could be highly conductive. By placing such domain walls between two superconductors, they achieved the desired ultimate proximity between counterpropagating edge states while minimising effects of disorder.

"We were encouraged to observe large supercurrents at relatively ‘balmy’ temperatures up to one Kelvin in every device we fabricated," Dr Barrier recalls.

Further investigation revealed that the proximity superconductivity originated not from the quantum Hall edge states propagating along domain walls, but rather from strictly 1D electronic states existing within the domain walls themselves. These 1D states, proven to exist by the theory group of Professor Vladimir Falko’s at the National Graphene Institute, exhibited a greater ability to hybridise with superconductivity as compared to quantum Hall edge states. The inherent one-dimensional nature of the interior states is believed to be responsible for the observed robust supercurrents at high magnetic fields.

This discovery of single-mode 1D superconductivity shows exciting avenues for further research. “In our devices, electrons propagate in two opposite directions within the same nanoscale space and without scattering", Dr Barrier elaborates. "Such 1D systems are exceptionally rare and hold promise for addressing a wide range of problems in fundamental physics."

The team has already demonstrated the ability to manipulate these electronic states using gate voltage and observe standing electron waves that modulated the superconducting properties.

is fascinating to think what this novel system can bring us in the future. The 1D superconductivity presents an alternative path towards realising topological quasiparticles combining the quantum Hall effect and superconductivity,” concludes Dr Xin. "This is just one example of the vast potential our findings holds."

20 years after the advent of the first 2D material graphene, this research by 鶹 represents another step forward in the field of superconductivity. The development of this novel 1D superconductor is expected to open doors for advancements in quantum technologies and pave the way for further exploration of new physics, attracting interest from various scientific communities.

 

The is a world-leading graphene and 2D material centre, focussed on fundamental research. Based at 鶹, by Professors Sir Andre Geim and Sir Kostya Novoselov, it is home to leaders in their field – a community of research specialists delivering transformative discovery. This expertise is matched by £13m leading-edge facilities, such as the largest class 5 and 6 in global academia, which gives the NGI the capabilities to advance underpinning industrial applications in key areas including: composites, functional membranes, energy, membranes for green hydrogen, ultra-high vacuum 2D materials, nanomedicine, 2D based printed electronics, and characterisation.

]]>
Thu, 25 Apr 2024 09:30:00 +0100 https://content.presspage.com/uploads/1369/500_graphenemembranes1.jpg?10000 https://content.presspage.com/uploads/1369/graphenemembranes1.jpg?10000
World-first analytical Transmission Electron Microscope being developed by 鶹 materials scientists /about/news/world-first-analytical-transmission-electron-microscope-being-developed-by-manchester-materials-scientists/ /about/news/world-first-analytical-transmission-electron-microscope-being-developed-by-manchester-materials-scientists/629619鶹 scientists are developing a world-first Transmission Electron Microscope (TEM) that integrates cutting-edge imaging and spectroscopy with artificial intelligence and automated workflows (AutomaTEM).

]]>
鶹 scientists are developing a world-first Transmission Electron Microscope (TEM) that integrates cutting-edge imaging and spectroscopy with artificial intelligence and automated workflows (AutomaTEM).

While existing TEMs can image atomic scale structure and chemistry, the time-consuming nature of the technique means the typical regions of interest (ROI) - areas of the sample selected for further analysis - are very limited. The AutomaTEM will resolve this, improving the ability to find and analyse, reducing time incurred while increasing the ROI. As a result, it will accelerate innovation in materials applications for quantum computing, low power electronics, and new catalysts to support the energy transition, all which are currently held back by the limitations of current technology.

The AutomaTEM development is funded through a £9.5 million project supported by 鶹, The Henry Royce Institute, bp and EPSRC, in collaboration with manufacturer Thermo Fisher Scientific. The 鶹 team, led by Professor Sarah Haigh, will merge TEM’s existing atomic scale elemental and chemical mapping capabilities together with emerging developments in automation and data analysis to create the AutomaTEM; an instrument that can acquire huge data sets of local chemical information in days rather than years.

Prof , Professor of Materials Characterisation at 鶹 and Director of the Electron Microscopy Centre (EMC), said: "Understanding atomic detail at the micrometer or millimeter scale is crucial for developing materials for various applications, from catalysis and quantum technologies to nuclear energy and pharmaceuticals.

"This system is not simply another TEM instrument. It will provide new opportunities for atomic scale investigation of materials with less human intervention. For the first time we will be able to enable atomic resolution analysis of hundreds of regions of interest in a matter of hours, providing unprecedented insights into sparse defects and heterogeneous materials." 

Designed with artificial intelligence and automated workflows at its core, the AutomaTEM boasts several cutting-edge features, including:

  • Computer control to automatically adjust the sample stage and beam to address specific regions of interest, enabling detailed high-resolution imaging and diffraction-based analysis without continuous operator interaction.
  • Machine learning integration to segment lower resolution data and build functional relationships between experimental results, enhancing the identification of novel features. 
  • A world-leading Energy Dispersive X-ray Spectroscopy (EDS) system with exceptional collection efficiency, providing precise compositional analysis.
  • A new high-performance electron energy loss spectrometer (EELS) design for chemical analysis of diverse species in complex systems.

Custom built, it is being developed in collaboration with Thermo Fisher Scientific and will arrive in summer 2025. The global laboratory equipment manufacturer has provided Professor Haigh’s team access to the necessary API control, and will supply an energy dispersive X-ray spectroscopy (EDS) system with a world-leading collection efficiency of 4.5 srad.

The AutomaTEM will be housed in 鶹's state-of-the-art (EMC), one of the largest in the UK. The EMC already has 6 transmission electron microscopes (TEMs), 13 scanning electron microscopes (SEMs), and 6 focussed ion beam (FIB) instruments. It supports more than 500 internal users, from 12 different University of 鶹 Departments, and welcomes users from institutes across the world, including Cardiff, Durham, Queen Mary and 鶹 Metropolitan universities, University of Cape Town (SA), Ceres Power, Nexperia, Nanoco, bp, Johnson Matthey, Oxford Instruments, and UKAEA.

AutomaTEM will be available to external users for free proof of principle academic projects for up to 30 per cent of its total use during the first three years to help foster collaboration and advance research capabilities.

, Royal Society University Research Fellow at 鶹, who is leading co-investigator on the project, said: "The faster, more accurate analysis capabilities of AutomaTEM represent a significant leap forward in materials science research.

“With the potential to impact various industries, including aerospace, automotive, and semiconductor, the AutomaTEM aims to support the UK’s position at the forefront of materials science innovation.”

Today’s announcement consolidates 鶹’s reputation at the forefront of advanced materials research. Home to highest concentration of materials scientists in UK academia, it hosts several national centres for Advanced Materials research including the Henry Royce Institute - the UK national institute for Advanced Materials Research; the bp-ICAM, a global partnership to enable the effective application of advanced materials for the transition to net zero; the National Centre for X-ray Computational Tomography; and the National Graphene Institute, the world-leading interdisciplinary centre for graphene and 2D materials research.

]]>
Wed, 24 Apr 2024 09:22:31 +0100 https://content.presspage.com/uploads/1369/d57a1ed2-2ddc-4620-899a-00dad69853f0/500_sarahhaighprofessorofmaterialscharacterisationattheuniversityofmanchesteranddirectoroftheelectronmicroscopycentreemcphotographedintheemc..jpg?10000 https://content.presspage.com/uploads/1369/d57a1ed2-2ddc-4620-899a-00dad69853f0/sarahhaighprofessorofmaterialscharacterisationattheuniversityofmanchesteranddirectoroftheelectronmicroscopycentreemcphotographedintheemc..jpg?10000
Scientists urge action over life-threatening pollution from solar power waste in Africa /about/news/scientists-urge-action-over-life-threatening-pollution-from-solar-power-waste-in-africa/ /about/news/scientists-urge-action-over-life-threatening-pollution-from-solar-power-waste-in-africa/629147Researchers from 鶹 investigating waste management practices for off-grid solar technologies in Malawi have discovered life-threatening quantities of lead pollution from improperly managed battery waste.

]]>
Researchers from 鶹 investigating waste management practices for off-grid solar technologies in Malawi have discovered life-threatening quantities of lead pollution from improperly managed battery waste.

Common informal recycling activities for lead-acid batteries used in solar energy systems were recorded to release 3.5-4.7 kg of lead pollution from a typical battery, which is equivalent to more than 100 times the lethal oral dose of lead for an adult.

Off-grid solar technologies are used to provide power to areas lacking traditional grid connections and are crucial for expanding electricity access across sub-Saharan Africa. The private market for off-grid solar electrification technologies is expected to provide electricity access to hundreds of millions of people by 2030, subsidized by global energy companies in the Global North, including the UK. Meanwhile, household scale off-grid solar energy systems in sub-Saharan Africa mostly depend on lead-acid batteries as the most affordable and established energy storage technology.

But the scientists warn that the absence of formal waste management infrastructure presents major human health and environmental risks and urge government intervention immediately.

This research, published today in the journal , was led by Dr Christopher Kinally for his PhD at 鶹, funded by EPSRC.

Dr Kinally said: “The private market for off-grid solar products is a very effective way to increase access to electricity, which is crucial for sustainable development. However, the resulting toxic waste flow is growing rapidly across regions that do not have the infrastructure to safely manage electronic waste.

“Without developing infrastructure, legislation and education around these technologies, there are severe public health risks. Significant social, economic and legislative interventions are required for these solar products to be considered as a safe, low-carbon technology in sub-Saharan Africa.”

Toxic informal waste management practices are known to be common for automotive batteries and electronic waste in low- and middle-income countries, but the environmental and health impacts of these practices have been widely overlooked. Now, efforts to promote sustainable development and electricity access are adding to these life-threatening waste streams.

Dr Kinally recorded that within suburban communities in Malawi, lead-acid batteries from solar energy systems are being refurbished openly on busy market streets by self-taught technicians, who are not aware of the toxicity of the materials they are handling.

He found that batteries are broken open with machetes, lead is melted over charcoal cooking stoves, and improvised lead battery cells are made by hand. In the process, approximately half of the lead content from each battery is leaked into the surrounding environment, releasing the equivalent of more than 100 lethal oral lead doses from a single battery into densely populated communities. 

This is the first data to quantify lead pollution from the informal recycling of lead-acid batteries from solar energy systems.  

Dr Alejandro Gallego Schmid, primary supervisor of the PhD and Senior Lecturer in Circular Economy and Life Cycle Sustainability Assessment at 鶹, added: “The problem is not the use a renewable source like solar energy, but the lack of appropriate treatment of the batteries at the end of life. We urgently need further research to reveal the health impacts of the identified flows of toxic pollution from solar batteries.”

Lead is a potent neurotoxin, and very low levels of lead exposure is known to permanently impact a child’s brain development. UNICEF have estimated that 800 million children across low- and middle-income countries have lead poisoning.

This widespread lead pollution is largely driven by improperly managed automotive battery waste and is expected to have substantial health and economic impacts across the Global South yet continues to be overlooked.  

Prior publications from the research team also highlight that the private off-grid solar market suffers from a general lack of supplier accountability and substandard, short-lived and counterfeit off-grid solar products were found to be common in Malawi, exploiting vulnerable energy-poor populations.

A lack of education about how to build and use these solar energy systems, which are particularly vulnerable to damage from improper use, is also severely limiting the lifetimes of batteries in off-grid solar energy systems.

Batteries in Malawi were recorded to often fail within a year, far shorter than the 3-5 year expected lifetime, accelerating the toxic waste flow. Meanwhile, the environmental impacts (including carbon emissions) from manufacturing and replacing short lived lead-acid batteries is compromising the sustainability and environmental benefits of solar energy systems.

Dr Fernando Antoñanzas, co-supervisor of the PhD, added: “This study brings more light on the maintenance and end-of-life phases of small off-grid solar projects, indeed left unattended in most cooperation projects. While informal lead-acid battery recycling offers a short-term solution for electrification for the poorest, at the same time, represents an enormous public health risk across Sub-Saharan Africa."

The research team has also provided policy recommendations for waste management solutions, including changes to how solar energy companies receive investments from the UK and Global North.

]]>
Fri, 19 Apr 2024 08:42:10 +0100 https://content.presspage.com/uploads/1369/926f3425-830d-4743-ab41-00c7b563b56d/500_p1090174-2.jpg?10000 https://content.presspage.com/uploads/1369/926f3425-830d-4743-ab41-00c7b563b56d/p1090174-2.jpg?10000
鶹 paleontologist unearths what may be the largest known marine reptile /about/news/manchester-paleontologist-unearths-what-may-be-the-largest-known-marine-reptile/ /about/news/manchester-paleontologist-unearths-what-may-be-the-largest-known-marine-reptile/627509A palaeontologist at 鶹 has identified the fossilised remains of a second gigantic jawbone measuring more than two metres long.

]]>
A palaeontologist at 鶹 has identified the fossilised remains of a second gigantic jawbone measuring more than two metres long.

Experts have identified the bones found on a beach in Somerset as belonging to the jaws of a new species of enormous ichthyosaur, a type of prehistoric marine reptile. Estimates suggest the oceanic titan would have been more than 25 metres long.

Father and daughter, Justin and Ruby Reynolds from Braunton, Devon, found the first pieces of the second jawbone to be found in May 2020, while searching for fossils on the beach at Blue Anchor, Somerset. Ruby, then aged 11, found the first chunk of giant bone before searching together for additional pieces.

Realising they had discovered something significant, they contacted leading ichthyosaur expert, , a palaeontologist at 鶹. Dr Lomax, who is also a 1851 Research Fellow at the University of Bristol, contacted Paul de la Salle, a seasoned fossil collector who had found the first giant jawbone in May 2016 from further along the coast at Lilstock.

Dr Dean Lomax said: “I was amazed by the find. In 2018, my team (including Paul de la Salle) studied and described Paul’s giant jawbone and we had hoped that one day another would come to light. This new specimen is more complete, better preserved, and shows that we now have two of these giant bones - called a surangular - that have a unique shape and structure. I became very excited, to say the least.”

Justin and Ruby, together with Paul, Dr Lomax, and several family members, visited the site to hunt for more pieces of this rare discovery. Over time, the team found additional pieces of the same jaw which fit together perfectly, like a multimillion-year-old jigsaw.

Justin said: “When Ruby and I found the first two pieces we were very excited as we realised that this was something important and unusual. When I found the back part of the jaw, I was thrilled because that is one of the defining parts of Paul's earlier discovery.”

The last piece of bone was recovered in October 2022.

The research team, led by Dr Lomax, revealed that the jaw bones belong to a new species of giant ichthyosaur that would have been about the size of a blue whale. Comparing the two examples of the same bone with the same unique features from the same geologic time zone supports their identifications.

The team have called the new genus and species Ichthyotitan severnensis, meaning “giant fish lizard of the Severn.”

The bones are around 202 million years old, dating to the end of the Triassic Period in a time known as the Rhaetian. During this time, the gigantic ichthyosaurs swam the seas while the dinosaurs walked on land. It was the titans’ final chapter, however—as the story told in the rocks above these fossils record a cataclysm known as the Late Triassic global mass extinction event. After this time, giant ichthyosaurs from the family known as Shastasauridae go extinct. Today, these bones represent the very last of their kind.

Ichthyotitan is not the world’s first giant ichthyosaur, but de la Salles’ and Reynolds’ discoveries are unique among those known to science. These two bones appear roughly 13 million years after their latest geologic relatives, including Shonisaurus sikanniensis from British Columbia, Canada, and Himalayasaurus tibetensis from Tibet, China.

Dr Lomax added: “I was highly impressed that Ruby and Justin correctly identified the discovery as another enormous jawbone from an ichthyosaur. They recognised that it matched the one we described in 2018. I asked them whether they would like to join my team to study and describe this fossil, including naming it. They jumped at the chance. For Ruby, especially, she is now a published scientist who not only found but also helped to name a type of gigantic prehistoric reptile. There are probably not many 15-year-olds who can say that! A Mary Anning in the making, perhaps.”

Ruby said: was so cool to discover part of this gigantic ichthyosaur. I am very proud to have played a part in a scientific discovery like this.”

Paul de la Salle said: “To think that my discovery in 2016 would spark so much interest in these enormous creatures fills me with joy. When I found the first jawbone, I knew it was something special. To have a second that confirms our findings is incredible. I am overjoyed.”

Further examinations of the bones’ internal structures have been carried out by master’s student, Marcello Perillo, from the University of Bonn, Germany. His work confirmed the ichthyosaur origin of the bones and revealed that the animal was still growing at the time of death.

He said: “We could confirm the unique set of histological characters typical of giant ichthyosaur lower jaws: the anomalous periosteal growth of these bones hints at yet to be understood bone developmental strategies, now lost in the deep time, that likely allowed late Triassic ichthyosaurs to reach the known biological limits of vertebrates in terms of size. So much about these giants is still shrouded by mystery, but one fossil at a time we will be able to unravel their secret.”

The new research has been published today in the open access journal PLOS ONE.

Ruby, Justin and Paul’s discoveries will soon go on display at the Bristol Museum and Art Gallery.

]]>
Wed, 17 Apr 2024 19:00:00 +0100 https://content.presspage.com/uploads/1369/5139df20-cff4-4966-8a71-8bfdb9b384ed/500_c.earlyphotowiththeteam.jpg?10000 https://content.presspage.com/uploads/1369/5139df20-cff4-4966-8a71-8bfdb9b384ed/c.earlyphotowiththeteam.jpg?10000
鶹 researchers awarded prestigious funding to pursue projects that could lead to major scientific breakthroughs /about/news/manchester-researchers-awarded-prestigious-funding-to-pursue-projects-that-could-lead-to-major-scientific-breakthroughs/ /about/news/manchester-researchers-awarded-prestigious-funding-to-pursue-projects-that-could-lead-to-major-scientific-breakthroughs/627491Seven leading 鶹 researchers are being awarded highly prestigious European Research Council (ERC) advanced grants.

]]>
Seven leading 鶹 researchers are being awarded highly prestigious designed to provide outstanding research leaders with the opportunity to pursue ambitious, curiosity-driven projects that could lead to major scientific breakthroughs.

Described by the ERC as among the EU’s most prestigious and competitive grants, today’s funding has been awarded to the following senior research leaders:

  • , Professor of Emerging Optoelectronics, based in the and , to investigate scalable nanomanufacturing paradigms for emerging electronics (SNAP). The program aims to develop sustainable large-area electronics, a potential game-changer in emerging semiconductor markets, that will help reduce society's reliance on current polluting technologies while enabling radically new applications.
  • , Chair in Evolutionary Biology, in the School of Biological Sciences, to investigate how genomic complexity shapes long-term bacterial evolution and adaptation.
  • , in the Department of Physics and Astronomy, and Director of the Photon Science Institute to develop a table-top nuclear facility to produce cold actinide molecules that will enable novel searches for new physics beyond the standard model of particle physics.
  • Professor Sir Andre Geim, who isolated graphene in 2004 with Professor Sir Konstantin Novoselov, to explore 2D materials and their van der Waals assemblies.
  • , to lead work into chemically fuelled molecular ratchets. Ratcheting underpins the mechanisms of molecular machinery, gives chemical processes direction, and helps explain how chemistry becomes biology.
  • , in the Department of Chemistry and  鶹 Institute of Biotechnology, to develop enzymatic methods for peptide synthesis (EZYPEP). Peptides are fundamental in life and are widely used as therapeutic agents, vaccines, biomaterials and in many other applications. Currently peptides are produced by chemical synthesis, which is inefficient, expensive, difficult to scale-up and creates a huge amount of harmful waste that is damaging to the environment. EZYPEP will address this problem by developing enzymatic methods for the more sustainable, cleaner and scalable synthesis of peptides, including essential medicines to combat infectious diseases, cancer and diabetes.
  •  , based in the Department of Physics and Astronomy, to explore Top and Higgs Couplings and extended Higgs Sectors with rare multi-Top multi-Higgs Events with the ATLAS detector at the LHC. This project aims at deeper insight into the most fundamental properties of nature beyond our current understanding.

鶹 received seven of the 42 grants awarded to UK institutions.

The grant recipients will join a community of just 255 awarded ERC advanced grants, from a total of 1,829 submissions.

As a result of today’s announcement, the ERC will be investing nearly €652 million across the 255 projects.

Head of Department for Physics and Astronomy, which received three of the seven grants, said: “Today’s triple award reflects our department’s continued leadership in pioneering research. We’re home to Jodrell Bank, host of the Square Kilometre Array Observatory – set to be the largest radio telescope in the world; the National Graphene Institute – a world-leading centre for 2D material research with the largest clean rooms in European academia; we lead experiments at CERN and Fermilab; and – crucially – we host a world-leading community of vibrant and collaborative researchers like Professors Flanagan, Geim and Peters who lead the way. Today’s announcement recognises their role as outstanding research leaders who will drive the next generation to deliver transformative breakthroughs.”

, Vice-Dean for Research and Innovation in the Faculty of Science and Engineering at 鶹, added: “Our University’s history of scientific and engineering research is internationally recognised but it does not constrain us. Instead, it’s the work of our researchers – like the seven leaders celebrated today – and what they decide to do next, that will define us.  We are proud to have a culture where responsible risk-taking is nurtured and transformative outcomes delivered, and we look forward to these colleagues using this environment to deliver world-leading and world-changing research.”

, Vice-Dean for Research and Innovation in the Faculty of Biology, Medicine and Health, said: "These awards are welcome recognition of the world-leading and transformative frontier science that 鶹 researchers are delivering. The compelling and innovative research supported by these ERC awards builds on the excellent local environment at 鶹 and are cornerstones of the University’s strategy for excellence and leadership in research and innovation. The positive and real-world global impact from these research awards could deliver are genuinely tangible.

"As we enter our third century, the awards made in a highly competitive environment, are evidence that we do so with a continued pioneering approach to discovery and the pursuit of knowledge that our research community was built on."

Iliana Ivanova, Commissioner for Innovation, Research, Culture, Education and Youth at the ERC, said: “This investment nurtures the next generation of brilliant minds. I look forward to seeing the resulting breakthroughs and fresh advancements in the years ahead.”

The ERC grants are part of the EU’s Horizon Europe programme.

]]>
Thu, 11 Apr 2024 12:21:32 +0100 https://content.presspage.com/uploads/1369/d2abb645-982a-4ccd-af20-ee80b8012669/500_logo-erc-flag-fp.png?10000 https://content.presspage.com/uploads/1369/d2abb645-982a-4ccd-af20-ee80b8012669/logo-erc-flag-fp.png?10000
Revolutionary molecular device unleashes potential for targeted drug delivery and self-healing materials /about/news/revolutionary-molecular-device-unleashes-potential-for-targeted-drug-delivery-and-self-healing-materials/ /about/news/revolutionary-molecular-device-unleashes-potential-for-targeted-drug-delivery-and-self-healing-materials/627331In a new breakthrough that could revolutionise medical and material engineering, scientists have developed a first-of-its-kind molecular device that controls the release of multiple small molecules using force.

]]>
In a new breakthrough that could revolutionise medical and material engineering, scientists have developed a first-of-its-kind molecular device that controls the release of multiple small molecules using force.

describe a force-controlled release system that harnesses natural forces to trigger targeted release of molecules, which could significantly advance medical treatment and smart materials.

The discovery, published today in the journal , uses a novel technique using a type of interlocked molecule known as rotaxane. Under the influence of mechanical force - such as that observed at an injured or damaged site - this component triggers the release of functional molecules, like medicines or healing agents, to precisely target the area in need. For example, the site of a tumour.

It also holds promise for self-healing materials that can repair themselves in situ when damaged, prolonging the lifespan of these materials. For example, a scratch on a phone screen.

Traditionally, the controlled release of molecules with force has presented challenges in releasing more than one molecule at once, usually operating through a molecular "tug of war" game where two polymers pull at either side to release a single molecule.

The new approach involves two polymer chains attached to a central ring-like structure that slide along an axle supporting the cargo, effectively releasing multiple cargo molecules in response to force application. The scientists demonstrated the release of up to five molecules simultaneously with the possibility of releasing more, overcoming previous limitations.

The breakthrough marks the first time scientists have been able to demonstrate the ability to release more than one component, making it one of the most efficient release systems to date.

The researchers also show versatility of the model by using different types of molecules, including drug compounds, fluorescent markers, catalyst and monomers, revealing the potential for a wealth of future applications.

Looking ahead, the researchers aim to delve deeper into self-healing applications, exploring whether two different types of molecules can be released at the same time. For example, the integration of monomers and catalysts could enable polymerization at the site of damage, creating an integrated self-healing system within materials.

They will also look to expand the sort of molecules that can be released.

said: "We've barely scratched the surface of what this technology can achieve. The possibilities are limitless, and we're excited to explore further."

]]>
Wed, 10 Apr 2024 16:00:00 +0100 https://content.presspage.com/uploads/1369/1017c164-321e-4e9f-b59f-731476f8ef7c/500_2024-01-25-debo-cover-suggestion-mechanochemistry.jpeg?10000 https://content.presspage.com/uploads/1369/1017c164-321e-4e9f-b59f-731476f8ef7c/2024-01-25-debo-cover-suggestion-mechanochemistry.jpeg?10000
Scientists unveil cutting-edge ruthenium catalyst for new reaction discovery and optimisation /about/news/scientists-unveil-cutting-edge-ruthenium-catalyst-for-new-reaction-discovery-and-optimisation/ /about/news/scientists-unveil-cutting-edge-ruthenium-catalyst-for-new-reaction-discovery-and-optimisation/627065Researchers at 鶹 have achieved a groundbreaking advancement in catalyst technology.

]]>
Researchers at 鶹 have achieved a groundbreaking advancement in catalyst technology.

They have developed a new catalyst which has been shown to have a wide variety of uses and the potential to streamline optimisation processes in industry and support new scientific discoveries.

Catalysts, often considered the unsung heroes of chemistry, are instrumental in accelerating chemical reactions, and play a crucial role in the creation of most manufactured products. For example, the production of polyethylene, a common plastic used in various everyday items such as bottles and containers or found in cars to convert harmful gases from the engine's exhaust into less harmful substances.

Among these, ruthenium – a platinum group metal – has emerged as an important and commonly used catalyst. However, while a powerful and cost-effective material, highly reactive ruthenium catalysts have long been hindered by their sensitivity to air, posing significant challenges in their application. This means their use has so far been confined to highly trained experts with specialised equipment, limiting the full adoption of ruthenium catalysis across industries.

In new research published in the journal Nature Chemistry, scientists at 鶹 working with collaborators at global biopharmaceutical company AstraZeneca unveil a ruthenium catalyst proven to be long-term stable in air while maintaining the high reactivity necessary to facilitate transformative chemical processes.

The discovery allows for simple handling and implementation processes and has shown versatility across a wide array of chemical transformations, making it accessible for non-specialist users to exploit ruthenium catalysis. Collaborative efforts with AstraZeneca demonstrate this new catalyst’s applicability to industry, particularly in developing efficient and sustainable drug discovery and manufacturing processes.

Dr James Douglas, Director of High-Throughput Experimentation who collaborated on the project from AstraZeneca said: “Catalysis is a critical technology for AstraZeneca and the wider biopharmaceutical industry, especially as we look to develop and manufacture the next generation of medicines in a sustainable way. This new catalyst is a great addition to the toolbox and we are beginning to explore and understand its industrial applications.”

The new approach has already led to the discovery of new reactions that have never been reported with ruthenium and with its enhanced versatility and accessibility, the researchers anticipate further advancements and innovations in the field.

McArthur, G., Docherty, J.H., Hareram, M.D. et al. An air- and moisture-stable ruthenium precatalyst for diverse reactivity. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01481-5

]]>
Mon, 08 Apr 2024 12:34:15 +0100 https://content.presspage.com/uploads/1369/c7e5daf9-89f3-41c0-987d-ab228244baf1/500_harwellcatalyst774x346.jpg?10000 https://content.presspage.com/uploads/1369/c7e5daf9-89f3-41c0-987d-ab228244baf1/harwellcatalyst774x346.jpg?10000
Lovell telescope detects unprecedented behaviour from nearby magnetar /about/news/lovell-telescope-detects-unprecedented-behaviour-from-nearby-magnetar/ /about/news/lovell-telescope-detects-unprecedented-behaviour-from-nearby-magnetar/627038An international team of astronomers have made a significant breakthrough in understanding the unprecedented behaviour of a previously dormant star with a powerful magnetic field.

]]>
An international team of astronomers have made a significant breakthrough in understanding the unprecedented behaviour of a previously dormant star with a powerful magnetic field.

Using the Lovell telescope at Jodrell Bank the researchers from the UK, Germany and Australia have shed new light on radio emission coming from a magnetar, known as XTE J1810-197.

Magnetars are a type of neutron star and the strongest magnets in the Universe. At roughly 8,000 light years away, this magnetar is also the closest known to Earth.

The magnetar is emitting light which is strongly polarised and rapidly changing. The scientists say this implies that interactions at the surface of the star are more complex than previous theoretical explanations suggest.

The results are published in two papers in the journal Nature Astronomy today.

Detecting radio pulses from magnetars is already extremely rare; XTE J1810-197 is one of only a handful known to produce them.

XTE J1810-197 was first observed to emit radio signals in 2003 before going silent for well over a decade. The signals were again detected by 鶹's 76-m Lovell telescope at the Jodrell Bank Observatory in 2018.

Since then, researchers at the University, in collaboration with institutes including the Max Planck Institute for Radio Astronomy in Germany, Australia’s national science agency CSIRO and the University of Southampton have been closely observing the magnetar.

Using the Lovell, Effelsberg and Murriyang telescopes, researchers have since noticed significant changes in the radio signals coming from the magnetar, particularly in the way the light was polarised, indicating that the magnetar's radio beam was shifting its direction in relation to Earth.

The researchers believed this was caused by an effect called free precession where the magnetar wobbles slightly due to slight asymmetries in its structure, similar to a spinning top.

Unexpectedly, this wobbling motion decreased rapidly over a few months and until it eventually stopped altogether. This contradicts the idea proposed by many astronomers that repeating fast radio bursts could be caused by magnetars undergoing precession.

Gregory Desvignes from the Max Planck Institute for Radio Astronomy in Bonn, Germany, and lead author of one of the two papers, said: “We expected to see some variations in the polarisation of this magnetar’s emission, as we knew this from other magnetars but we did not expect that these variations are so systematic, following exactly the behaviour that would be caused by the wobbling of the star.”

But the reason as to why the circular polarisation changes, where the light appears to spiral as it moves through space, remain uncertain.

Dr Marcus Lower, a postdoctoral fellow at CSIRO, who led the Australian research using Murriyang, CSIRO’s Parkes radio telescope, said: “Our results suggest there is a superheated plasma above the magnetar's magnetic pole, which is acting like a polarising filter. How exactly the plasma is doing this is still to be determined.”

Papers
Desvignes, G., Weltevrede, P., Gao, Y. et al. Nat Astron (2024).
Lower, M.E., Johnston, S., Lyutikov, M. et al. Linear to circular conversion in the polarized radio emission of a magnetar. Nat Astron (2024).

 

]]>
Mon, 08 Apr 2024 10:00:00 +0100 https://content.presspage.com/uploads/1369/55f128f6-523c-4477-86a6-d0f3d9beaff6/500_threetelescopes.png?10000 https://content.presspage.com/uploads/1369/55f128f6-523c-4477-86a6-d0f3d9beaff6/threetelescopes.png?10000
鶹 researchers help secure £49.35m to boost mass spectrometry research /about/news/manchester-researchers-help-secure-4935m-to-boost-mass-spectrometry-research/ /about/news/manchester-researchers-help-secure-4935m-to-boost-mass-spectrometry-research/626141Scientists at 鶹 have supported a successful bid for a new distributed research and innovation infrastructure aimed at bolstering the UK’s capability in mass spectrometry.

]]>
Scientists at 鶹 have supported a successful bid for a new distributed research and innovation infrastructure aimed at bolstering the UK’s capability in mass spectrometry.

The bid was delivered by a coordination team, which includes and from the University and has secured £49.35m from the UKRI Infrastructure Fund to establish C-MASS - a national hub-and-spoke infrastructure designed to integrate and advance the country’s capability in mass spectrometry.

Mass spectrometry is a central analytical technique that quantifies and identifies molecules by measuring their mass and charge. It is used across science and medicine, for drug discovery, to screen all newborn babies for the presence of metabolic disorders, to monitor pollution and to tell us what compounds are in the tails of comets.

Researchers at 鶹 develop and apply mass spectrometry in many of its research centres and institutes, including the , the , , , the , and the

C-MASS will enable rapid methodological advances, by developing consensus protocols to allow population level screening of health markers and accelerated data access and sharing. It will bring together cutting-edge instrumentation at a range of laboratories connected by a coordinating central hub that will manage a central metadata catalogue. Together, this will provide unparalleled signposting of data and will be a critical measurement science resource for the UK.

The bid for the funding has been developed over the last 10 years and has included input and support from more than 40 higher education institutes, 35 industrial partners and numerous research institutes.

鶹 is renowned for its expertise in mass spectrometry. J.J. Thomson, who was an alumnus of 鶹, built the first mass spectrometer - originally called a parabola spectrograph - in 1912. Later, another alumnus, James Chadwick, commissioned the first commercial mass spectrometer, built by the 鶹 firm Metropolitan Vickers, for use in the second world war to separate radioactive isotopes.

Now, many decades later, the University receives more funding in mass spectrometry than any other higher education institution in the UK and more mass spectrometers are made in the 鶹 region than any other in Europe.

At the University, researchers across a range of disciplines including , , use mass spectrometry for wide range of world-leading research. Just some of those projects include: , improving the testing and diagnosis of womb cancer, improving our understanding of Huntington’s disease and rheumatic heart disease, diagnosing Parkinson’s disease and finding treatments for blindness.

The mass spectrometry laboratories at the University boast a range of industry-leading instrumentations, not just for staff and students, but also collaborating with many external companies. 

]]>
Thu, 28 Mar 2024 12:50:03 +0000 https://content.presspage.com/uploads/1369/c1dbdf9b-180a-456d-afaf-80f05bec6de1/500_mib-1138.jpg?10000 https://content.presspage.com/uploads/1369/c1dbdf9b-180a-456d-afaf-80f05bec6de1/mib-1138.jpg?10000
Postdoctoral researcher wins prestigious Women in Science award for sustainable development /about/news/postdoctoral-researcher-wins-prestigious-women-in-science-award-for-sustainable-development/ /about/news/postdoctoral-researcher-wins-prestigious-women-in-science-award-for-sustainable-development/625448Dr Reem Swidah, a postdoctoral researcher at 鶹, has been awarded the prestigious L'Oréal UNESCO Award for Women in Science for her work in sustainable development.

]]>
Dr Reem Swidah, a postdoctoral researcher at 鶹, has been awarded the prestigious L'Oréal UNESCO Award for Women in Science for her work in sustainable development.

The awards celebrate outstanding women post-doctoral scientists, and forms part of the L’Oréal-UNESCO for Women in Science UK & Ireland Rising Talent Programme, which offers awards to promote, enhance and encourage the contribution of women pursuing their scientific research careers in the UK or Ireland.

Dr Swidah, a postdoctoral researcher at the 鶹 Institute of Biotechnology, was one of five winners at the award at a ceremony at the House of Commons in London on Monday, 18 March.

Other winners were awarded in the categories of engineering, life sciences, mathematics and computing and physical science.

Reem said: “I am honoured to announce that I have been awarded the prestigious L'Oréal UNESCO Award for Women in Science in the category of Sustainable Development.  

“These awards are vital for supporting and celebrating women in science, offering recognition and inspiration. It provides financial research support, fosters networking and collaboration among recipients, and contributes to reducing gender disparities in STEM fields. By highlighting the achievements of women scientists, the award inspires future generations and advocates for gender equality in science.

“Programs like L'Oréal UNESCO  for women in science are critically important, providing vital recognition and support for women scientists while challenging prevailing stereotypes and biases.  Believe in yourself, defy stereotypes, continuously enhance your professional skills, and persist in pursuing your dreams. If opportunities don't come your way, create your own path. Seek mentors, embrace learning, take risks, step out of your comfort zone, and surround yourself with supportive peers. Remember, diversity in STEM drives progress and innovation.

“This award will enable me to balance motherhood and research while gaining the necessary support to make a meaningful impact in my field.”

Reem received a £25,000 grant that is fully flexible and tenable at any UK or Irish university or research institute to support 12 months of research. Her work currently focuses on the genome minimization project (part of the Sc3.0 project initiative), focusing on genome minimization within the synthetic yeast strain (Sc2.0).

Reem was selected for the award for her drive and ambition to leverage her skills in synthetic biology to address global challenges and her work to harness the exceptional evolutionary abilities of synthetic yeast strains to develop innovative and cost-effective technologies to produce biofuels.

She believes that these advancements hold the potential to combat climate change and play a pivotal role in achieving the ambitious goal of Net Zero emissions by 2050, a key strategic objective of 鶹.

She added: “This award will enhance childcare support for my baby and will afford me the time and financial resources to develop my professional skills. I intend to engage in one-to-one career coaching programs and leadership training, which will help me unlock my full potential and excel in my role, which I currently cannot do.

“The grant will also enable me to attend international conferences, where I can engage with scientists and stay updated on global challenges and solutions and it will help me to enhance my research independence by using the grant to purchase small equipment and to conduct essential experiments to boost my research objectives.”

The Women in Science National Rising Talents  is run in partnership between L’Oréal UK and Ireland, the UK National Commission for UNESCO and the Irish National Commission for UNESCO, with the support of the Royal Society.

Thierry Cheval, L'Oréal UK and Ireland, Managing Director said: “As a company founded by a scientist over 100 years ago, L’Oréal, together with UNESCO, is committed to driving gender equality in STEM and recognising the exceptional work of female scientists who are vitally contributing to solving the challenges of tomorrow.

“Congratulations to this year’s Fellows who are a true inspiration for generations to come.”

Professor Anne Anderson, Chair of the UK National Commission for UNESCO's Board of Directors, added: “Congratulations to the 2024 Rising Talents. As we stand at a pivotal moment in time for scientific advancement, UNESCO continues to highlight the importance of true gender equality in science, technology, engineering and mathematics (STEM) and the vital role women play in a more equitable scientific society.

“The United Kingdom National Commission for UNESCO is proud to support these young women in STEM from the UK & Ireland and celebrate their achievements as researchers paving the way for a brighter global future.”

]]>
Fri, 22 Mar 2024 11:40:53 +0000 https://content.presspage.com/uploads/1369/66317f2a-17f5-46c7-a947-b67169ce0bf7/500_reem.jpeg?10000 https://content.presspage.com/uploads/1369/66317f2a-17f5-46c7-a947-b67169ce0bf7/reem.jpeg?10000
Climate change disrupts vital ecosystems in the Alps /about/news/climate-change-disrupts-vital-ecosystems-in-the-alps/ /about/news/climate-change-disrupts-vital-ecosystems-in-the-alps/625276Reduced snow cover and shifting vegetation patterns in the Alps, both driven by climate change, are having major combined impacts on biodiversity and functioning of ecosystems in the high mountains, according to new research published today.

]]>
Reduced snow cover and shifting vegetation patterns in the Alps, both driven by climate change, are having major combined impacts on biodiversity and functioning of ecosystems in the high mountains, according to new research published today.

Mountain ranges covering vast areas of the world are warming much faster than surrounding lowland areas, triggering huge reductions in snow cover and rapid upward movement of dwarf-shrubs, such as heather.

Scientists at 鶹 have found that these changes are disrupting the timing of crucial alpine ecosystem functions performed by plants and soil microorganisms.

The research, published today in the journal and funded by the UK Natural Environment Research Council, shows that high mountain ecosystems may be less capable of retaining the important nutrients needed to sustain plant growth and maintain biodiversity in these harsh environments.

Every year, seasonal changes in mountain ecosystems prompt large transfers of nutrients between plants and microbial communities in alpine soils. Following snowmelt in spring, plants start to grow and compete with soil microbes for nutrients, thereby triggering a shift in the storage of nutrients from soil to plants. This transfer is reversed in autumn, as plants die back, and nutrients are returned to the soil within dead leaves and roots.

During alpine winters, snow acts like an insulating blanket that allows soil microbes to continue functioning and store nutrients in their biomass and enables plants to survive cold alpine winters. Climate change is predicted to cause an 80-90% loss of snow cover by the end of the century in parts of the European Alps and advance the timing of snowmelt by five to 10 weeks.

Prof Michael Bahn, a collaborator on the project from the University of Innsbruck, said: "Declining winter snow cover is one of the most obvious and pronounced impacts of climate change in the Alps. Its effects on the functioning and biodiversity of alpine ecosystems are a major concern for people living in Alpine regions and beyond.”

The scientists from 鶹, in collaboration with the University of Innsbruck, Helmholtz Zentrum München, and the UK Centre for Ecology and Hydrology, carried out the work on a long-term field experiment in the European Alps. The findings highlight the detrimental effect of climate change on seasonal transfers and retention of nutrients between plants and soil microbes.

For scientists, understanding how ecosystems respond to multiple simultaneous climate change impacts remains a major challenge. Interactions between direct and indirect climate change factors, such as snow cover change or less obvious ones such as dwarf-shrub expansion, can lead to sudden and unexpected changes in ecosystem functioning. These effects are impossible to predict by studying climate change factors in isolation.

]]>
Thu, 21 Mar 2024 10:01:00 +0000 https://content.presspage.com/uploads/1369/b18b02b3-bc49-49a7-8777-4db86af63492/500_snowsamplinginthealps.credithelensnell.jpg?10000 https://content.presspage.com/uploads/1369/b18b02b3-bc49-49a7-8777-4db86af63492/snowsamplinginthealps.credithelensnell.jpg?10000
University of 鶹 recognised as Academic Centre of Excellence in Cyber Security Research /about/news/university-of-manchester-recognised-as-academic-centre-of-excellence-in-cyber-security-research/ /about/news/university-of-manchester-recognised-as-academic-centre-of-excellence-in-cyber-security-research/625267鶹 has been named an Academic Centre of Excellence (ACE-CSR) in recognition of its internationally leading cyber security research.

 

]]>
鶹 has been named an Academic Centre of Excellence (ACE-CSR) in recognition of its internationally leading cyber security research.

The University is one of 21 universities to receive the status by the Engineering and Physical Sciences Research Council (EPSRC) and the National Cyber Security Centre (NCSC) - the UK's lead technical authority on cyber security.

It is one of several initiatives outlined in the UK government’s ‘Protecting and promoting the UK in a digital world’, which describes how the government is working with academia and industry to make the UK more resilient to cyber attacks.

The scheme aims to enhance the quality and scale of academic cybersecurity research and postgraduate training being undertaken in the UK; make it easier for potential users of research to identify the best cybersecurity research and postgraduate training that the UK has to offer; and help to develop a shared vision and aims among the UK cybersecurity research community, inside and outside academia.

The Centre will be led by colleagues in the University’s , which has a long history of world-leading cyber security research and will be directed by and co-directed by Professor Daniel Dresner and .

Nicholas Lord, Professor of Criminology at 鶹, said: “We are very proud to be recognised as an Academic Centre of Excellence in Cyber Security Research. Receiving this status is further recognition of our long-standing commitment to world-leading cyber security research and key to the realisation of our five-year research plan.

“Our cyber security research has been a focal point for the University since founding our Digital Futures platform in 2018, with our sociotechnical approach to cyber security coming together recognisably in 2021 by the creation of our Centre for Digital Trust and Society - a truly unique Centre with a strong interdisciplinary nature.

“Over the next five years we hope that we can use our ACE-CSR recognition to strengthen our collaborations with other ACEs and NCSC, as well as enhance our collaborations with the Greater 鶹 Combined Authority with a view to integrating cyber security into the city region’s business community.”

Professor Colette Fagan, Vice-President for Research at 鶹, added: “I am thrilled that our University has been recognised as an Academic Centre of Excellence in Cyber Security Research. This achievement, led by our Centre for Digital Trust and Security, underscores our commitment to pioneering cyber security research and innovation through interdisciplinary collaborative research. This approach and ambition is vital to ensure that the benefits of the rapid pace of technological change are developed in ways that ensure a safe and more secure digital world for our citizens and organisations.”

The University was required to show evidence of NCSC’s tough standards to be considered, including: commitment from the University's leadership team to support and invest in the University's cyber security research capacity and capability; a critical mass of academic staff engaged in leading-edge cyber security research; a proven track record of producing high impact cyber security research; and sustained funding from a variety of sources to ensure the continuing financial viability of the research team's activities.

Chris Ensor, Deputy Director Cyber Growth at NCSC, said: “I’m delighted that 21 universities have been recognised as Academic Centres of Excellence in Cyber Security Research, including four who have received the award for the first time. These recognitions are testament to the dedication of academics, support staff and senior management who have ensured that cyber security remains high on the university’s agenda. And they demonstrate that the UK has a growing number of world-class universities carrying out cutting-edge research into all areas of cyber security. We very much look forward to working with them over the coming years to tackle the most difficult cyber security challenges.”

The Centre for Digital Trust and Society at 鶹 is one of few cyber and digital security and trust research centre in the UK led from social science, rather than a computer science or engineering department.

It focuses on barriers to, and enablers of, trust in digital and cyber technologies and has more than 80 active researchers affiliated to the Centre.

The Centre prides itself on its strong interdisciplinary engagement across the University and supports six multi-disciplinary research clusters: Trusted Digital Systems, Digital Technologies and Crime, Workplace and Organisational Security, Democracy and Trust, Privacy and Trust and Advanced Mathematics.

Dr Mustafa, Senior Lecturer in Systems and Software Security at 鶹, said: “While our cybersecurity research across the Department of Computer Science provides the fundamentals and foundations of our Centre’s research, our social science academics provide the societal relevance and context: secure cyber and digital systems are grounded in everyday human behaviours and interactions. It is for this reason that we coordinate our sociotechnical cybersecurity research activities ensuring the people and social factors remain central. We do this by engaging in cross-cluster and cross-disciplinary research activities, realising our sociotechnical work through internally and externally funded research.”

Over the next five years, researchers will work on a wide range of projects from cyber security controls, building secure and safe (AI) software to counter threats, through understanding offending and victimisation of cybercrimes, to the application of cyber security research in development and industry, as well as the cyber risks to political-economic systems and organisational workplaces, and the need for data privacy and security.

The ACE-CSR will continue to hold strong national and international links - in particular - to work with its partners in the Greater 鶹 Cyber Ecosystem and the wider North West Cyber Corridor.

]]>
Thu, 21 Mar 2024 09:34:31 +0000 https://content.presspage.com/uploads/1369/500_21-4.jpg?10000 https://content.presspage.com/uploads/1369/21-4.jpg?10000